组合数学的卡特兰数 TOJ 3551: Game of Connections
这个就是卡特兰数的经典问题
直接用这个公式就好了,但是这个题涉及大数的处理h(n)=h(n-1)*(4*n-2)/(n+1)
其实见过好几次大数的处理了,有一次他存的恰好不多于30位,直接分成两部分long long 存了
这个只涉及到大数乘小数,大数除以小数,所以比较简单些
3551: Game of Connections
Total Submit: 5 Accepted:4
Description
It's still a simple game, isn't it? But after you've written down the 2n numbers, can you tell me in how many different ways can you connect the numbers into pairs? Life is harder, right?
Input
Output
Sample Input
2
3
-1
Sample Output
2
5
Hint
The result may exceed 2^64.
#include <stdio.h>
int a[][];
int main()
{
a[][]=;
for(int i=; i<; i++)
{
int c=;
for(int j=; j<; j++)
{
a[i][j]=a[i-][j]*(*i-)+c;
c=a[i][j]/;
a[i][j]%=;
}
c=;
for(int j=; j>=; j--)
{
c=c*+a[i][j];
a[i][j]=c/(i+);
c%=(i+);
}
}
int n;
while(~scanf("%d",&n),n>)
{
int t=;
while(a[n][t]==)t--;
while(t>=)printf("%d",a[n][t--]);
putchar();
}
return ;
}
组合数学的卡特兰数 TOJ 3551: Game of Connections的更多相关文章
- CodeForces - 1204E Natasha, Sasha and the Prefix Sums (组合数学,卡特兰数扩展)
题意:求n个1,m个-1组成的所有序列中,最大前缀之和. 首先引出这样一个问题:使用n个左括号和m个右括号,组成的合法的括号匹配(每个右括号都有对应的左括号和它匹配)的数目是多少? 1.当n=m时,显 ...
- uva 1478 - Delta Wave(递推+大数+卡特兰数+组合数学)
option=com_onlinejudge&Itemid=8&category=471&page=show_problem&problem=4224" st ...
- Train Problem II(卡特兰数 组合数学)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1023 Train Problem II Time Limit: 2000/1000 MS (Java/ ...
- hdu5673 Robot 卡特兰数+组合数学+线性筛逆元
Robot Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
- CodeForces - 896D :Nephren Runs a Cinema(卡特兰数&组合数学---比较综合的一道题)
Lakhesh loves to make movies, so Nephren helps her run a cinema. We may call it No. 68 Cinema. Howev ...
- [luogu1485 HNOI2009] 有趣的数列 (组合数学 卡特兰数)
传送门 Solution 卡特兰数 排队问题的简单变化 答案为\(C_{2n}^n \pmod p\) 由于没有逆元,只好用分解质因数,易证可以整除 Code //By Menteur_Hxy #in ...
- 卡特兰数(Catalan)
卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名,其前几项为 : 1, 2, ...
- 卡特兰数(Catalan Number) 算法、数论 组合~
Catalan number,卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡特兰数的前几个数 前20项为( ...
- 卡特兰数 Catalan数 ( ACM 数论 组合 )
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1) 编辑 收藏 引用 所属分类: ACM ( 数论 ...
随机推荐
- kafka java api生产者
import java.util.HashMap; import java.util.List;import java.util.Map;import java.util.Properties; im ...
- CSS元素隐藏的display和visibility
一.CSS元素隐藏 在CSS中,让元素隐藏(指屏幕范围内肉眼不可见)的方法很多,有的占据空间,有的不占据空间:有的可以响应点击,有的不能响应点击. { display: none; /* 不占据空间, ...
- mysql命令行执行时不输出列名(字段名)
-N 即可 如:mysql -N -e "select * from test" 摘自:http://blog.csdn.net/eroswang/article/details/ ...
- 分析(ExtractTransformLoad)与挖掘(DataMine)有何区别 ?
首先,介绍一下ETL 和 DM: ETL/Extraction-Transformation-Loading——用于完成DB到DW的数据转存,它将DB中的某一个时间点的状态,“抽取”出来,根据 ...
- XSS 攻击实验 & 防御方案
XSS 攻击&防御实验 不要觉得你的网站很安全,实际上每个网站或多或少都存在漏洞,其中xss/csrf是最常见的漏洞,也是最容易被开发者忽略的漏洞,一不小心就要被黑 下面以一个用户列表页面来演 ...
- 按Home键切换到后台后会触发libGPUSupportMercury.dylib: gpus_ReturnNotPermittedKillClient导致crash
转自:http://www.eoeandroid.com/thread-251598-1-1.html 好像有很多朋友都碰到过这个问题,即在真机调试时,按hone键返回桌面,再回到app时,app会c ...
- ARC和MRC混合模式下的编译问题
在一个支持ARC (Automatic Reference Counting)的项目中,有时候需要禁止其中几个文件使用ARC模式编译(比如你用了第三方不支持ARC的类库).这时就要点击工程文件,在ta ...
- php日期时间和时间戳转化
echo date("Y-m-d H:i:s", 1409138643);echo strtotime('2014-08-28 23:00:00');
- archlinux alsa安装,音量设置和音量信息保存
1,使用前确认安装了alsa-utils sudo pacman -S alsa-utils2,运行alsamixer调试音量 alsamixer左右键选择调哪个,将Master和PCM按“m”解除静 ...
- 在Xcode中编辑运行 Python 脚本
http://www.zhihu.com/question/19872198 打开Xcode,File->New->Project选中OS X下的Other点击External Build ...