COURSES
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 18454   Accepted: 7275

Description

Consider a group of N students and P courses. Each student visits zero, one or more than one courses. Your task is to determine whether it is possible to form a committee of exactly P students that satisfies simultaneously the conditions:

  • every student in the committee represents a different course (a student can represent a course if he/she visits that course)
  • each course has a representative in the committee

Input

Your program should read sets of data from the std input. The first line of the input contains the number of the data sets. Each data set is presented in the following format:

P N
Count1 Student1 1 Student1 2 ... Student1 Count1
Count2 Student2 1 Student2 2 ... Student2 Count2
...
CountP StudentP 1 StudentP 2 ... StudentP CountP

The first line in each data set contains two positive integers separated by one blank: P (1 <= P <= 100) - the number of courses and N (1 <= N <= 300) - the number of students. The next P lines describe in sequence of the courses �from course 1 to course P, each line describing a course. The description of course i is a line that starts with an integer Count i (0 <= Count i <= N) representing the number of students visiting course i. Next, after a blank, you抣l find the Count i students, visiting the course, each two consecutive separated by one blank. Students are numbered with the positive integers from 1 to N.
There are no blank lines between consecutive sets of data. Input data are correct.

Output

The result of the program is on the standard output. For each input data set the program prints on a single line "YES" if it is possible to form a committee and "NO" otherwise. There should not be any leading blanks at the start of the line.

Sample Input

2
3 3
3 1 2 3
2 1 2
1 1
3 3
2 1 3
2 1 3
1 1

Sample Output

YES
NO

Source

题目解读:p门课,n个学生. 接下来p行,每行代表第i门课每行先输入这门课的学生数,然后在一次输入这些学生的编号。通过匈牙利算法问:能不能保证每门课至少都有一个学生. 算法要点:最大匹配数>=课程数p ?

匈牙利算法 代码:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <iostream>
#include <string>
#include <vector>
#include <algorithm> using namespace std; vector<int>g[310];
int link[310], vis[310];
int p, n; bool match(int x)
{
for(int i=0; i<g[x].size(); i++ )
{
if(!vis[g[x][i]] )
{
vis[g[x][i]] = true;
if(link[g[x][i]]==-1 || match(link[g[x][i]]) )
{
link[g[x][i]] = x;
return true;
}
}
}
return false;
} int hungary()
{
int tot=0;
memset(link, 255, sizeof(link));
for(int i=1; i<=n; i++)
{
memset(vis, 0, sizeof(vis));
if(match(i) )
{
tot++;
}
}
return tot;
}
int main()
{
int t;
int i, j, k; scanf("%d", &t);
while(t--)
{
scanf("%d %d", &p, &n);
int dd, u;
for(i=1; i<=n; i++)
g[i].clear();
for(i=1; i<=p; i++)
{
scanf("%d", &dd);
while(dd--)
{
scanf("%d", &u);
g[u].push_back(i);
}
}
int ans = hungary();
if(ans >= p)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

Hopcroft-Karp 算法:

Hopcroft-Karp算法相比普通的匈牙利算法更快,所以当两边集合的点比较多时,为了快速完成匹配可以考虑这个算法,即使是有模板,但代码比较长且比较繁琐,容易写错。

敲的时候要特别注意!

H-K算法代码:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <iostream>
#include <string>
#include <vector>
#include <queue>
#include <algorithm> using namespace std;
int p, n;
vector<int>g[310];
int n1, n2;
int mx[310], my[310];
queue<int>que; int dx[310], dy[310];
bool vis[310]; bool find(int u)
{
for(int i=0; i<g[u].size(); i++)
{
if(!vis[g[u][i]] && dy[g[u][i]] == dx[u]+1 )
{
vis[g[u][i]] = true;
if(!my[g[u][i]] || find(my[g[u][i]]) )
{
mx[u] = g[u][i];
my[g[u][i]] = u;
return true;
}
}
}
return false;
} int matching()
{
memset(mx, 0, sizeof(mx));
memset(my, 0, sizeof(my));
int ans=0; while(true)
{
bool flag=false;
while(!que.empty())
que.pop();
memset(dx, 0, sizeof(dx));
memset(dy, 0, sizeof(dy));
for(int i=1; i<=n1; i++)
if(!mx[i] )
que.push(i);
while(!que.empty() )
{
int u=que.front();
que.pop();
for(int i=0; i<g[u].size(); i++ )
{
if(!dy[g[u][i]] )
{
dy[g[u][i]] = dx[u]+1;
if(my[g[u][i]])
{
dx[my[g[u][i]]] = dy[g[u][i]] + 1;
que.push(my[g[u][i]] );
}
else
flag=true;
}
}
}
if(!flag) break;
memset(vis, false, sizeof(vis));
for(int i=1; i<=n1; i++)
{
if(!mx[i] && find(i) )
ans++;
}
}
return ans;
} int main()
{
int t;
scanf("%d", &t);
int dd, u;
while(t--)
{
scanf("%d %d", &p, &n);
for(int i=1; i<=n; i++)
g[i].clear();
for(int i=1; i<=p; i++)
{
scanf("%d", &dd);
while(dd--)
{
scanf("%d", &u);
g[u].push_back(i);
}
}
n1=n; n2=p;
int ans = matching();
if(ans >= p )
printf("YES\n");
else
printf("NO\n"); }
return 0;
}

poj 1469 COURSES (二分图模板应用 【*模板】 )的更多相关文章

  1. POJ 1469 COURSES 二分图最大匹配 二分图

    http://poj.org/problem?id=1469 这道题我绝壁写过但是以前没有mark过二分图最大匹配的代码mark一下. 匈牙利 O(mn) #include<cstdio> ...

  2. POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配

    两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...

  3. poj 1469 COURSES(匈牙利算法模板)

    http://poj.org/problem?id=1469 COURSES Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  4. Poj(1469),二分图最大匹配

    题目链接:http://poj.org/problem?id=1469 COURSES Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  5. POJ 1469 COURSES

    COURSES Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20478   Accepted: 8056 Descript ...

  6. poj 1469 COURSES 题解

    COURSES Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21515   Accepted: 8455 Descript ...

  7. poj 1469 COURSES 解题报告

    题目链接:http://poj.org/problem?id=1469 题目意思:有 N 个人,P个课程,每一个课程有一些学生参加(0个.1个或多个参加).问 能否使得 P 个课程 恰好与 P 个学生 ...

  8. poj——1469 COURSES

    COURSES Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24192   Accepted: 9426 Descript ...

  9. POJ 1469 COURSES(二部图匹配)

                                                                     COURSES Time Limit: 1000MS   Memory ...

随机推荐

  1. TensorFlow笔记三:从Minist数据集出发 两种经典训练方法

    Minist数据集:MNIST_data 包含四个数据文件 一.方法一:经典方法 tf.matmul(X,w)+b import tensorflow as tf import numpy as np ...

  2. 2016.11.14 MIT challenge之课程总览

    Degree Chartshttp://catalog.mit.edu/degree-charts/computer-science-engineering-course-6-3/ MIT Chall ...

  3. json-path解析json方便可靠

    JsonPath is to JSON what XPATH is to XML, a simple way to extract parts of a given document. JsonPat ...

  4. 给java类加static修饰编译器会说什么?

    Illegal modifier for the class XXX;only public abstract & final are permitted.

  5. js 快速排序

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. 【Python】字典~深入篇

    字典的定义 字典是一系列键值对,字典用放在{}一系列键值对表示 info = {','city':'KunMing'} 字典增.删.改.查 增加新元素 指定字典名,用方括号括起来的键和相关的值 inf ...

  7. cheap louis vuitton outlet

    <h1>louis vuitton outlet store</h1>2 nigerian networking systems chosen seeing that enem ...

  8. Lua学习三----------Lua数据类型

    © 版权声明:本文为博主原创文章,转载请注明出处 Lua数据类型 - Lua是动态类型语言,不需要为变量定义类型,只需要为变量赋值 - Lua有8中基本数据类型:nil.boolean.number. ...

  9. ubuntu16.04 Cmake学习二

    本节主要总结编译程序的时候使用了第三方库的情况,以调用开源opencv-2.4.9为例子,具体安装详见http://www.cnblogs.com/xsfmg/p/5900420.html. 工程文件 ...

  10. gcc编译静态库和动态库

      今天要用到静态库和动态库,于是写了几个例子来巩固一下基础.hello1.c ———————————————————— #include <stdio.h>void print1(int ...