题意:给定n,表示要放n个骨牌,每次放下骨牌,有可能向左倒的概率为pl,向右倒的概率为pr,如果倒下,会将那一侧的骨牌全部推倒,可以选择位置先后放骨牌,问说一种放骨牌次数最少的期望是多少。

/*
设dp[i]表示放置连续的i个期望的步数。
需要枚举放置的位置,即左边和右边有多少个,放置成功的期望步数为1/(1-pl-pr),如果放置失败了,那么就会是左边或右边的骨牌倒塌,此时重建的期望步数为dp[l]*pl+dp[r]*pr,所以可以得到转移方程:
dp[i]=min(dp[l]+dp[r]+(dp[l]*pl+dp[r]*pr+1)/(1-pl-pr))
*/
#include<iostream>
#include<cstdio>
#include<iostream>
#define N 1010
#define inf 1000000000
using namespace std;
int n;double dp[N],pl,pr;
int main(){
while(scanf("%d",&n)){
if(!n) break;
scanf("%lf%lf",&pl,&pr);
dp[]=;dp[]=/(-pl-pr);
for(int i=;i<=n;i++) dp[i]=inf;
for(int i=;i<=n;i++)
for(int j=;j<i;j++){
int l=j,r=i-j-;
dp[i]=min(dp[i],dp[l]+dp[r]+(dp[l]*pl+dp[r]*pr+)/(-pl-pr));
}
printf("%.2lf\n",dp[n]);
}
return ;
}

Dumb Bones(uva 10529)的更多相关文章

  1. 2018.09.09 UVa10529 - Dumb Bones(期望dp)

    传送门 期望dp好题. f[i]表示摆放i个的最小花费,于是f[i]可以从f[j]与f[i-j+1]转移过来了. 代码: #include<bits/stdc++.h> #define N ...

  2. UVA 10529 - Dumb Bones(概率+区间dp)

    UVA 10529 - Dumb Bones option=com_onlinejudge&Itemid=8&category=518&page=show_problem&am ...

  3. 并查集(UVA 1106)

    POINT: 把每个元素看成顶点,则一个简单化合物就是一条无向边,若存在环(即k对组合中有k种元素),则危险,不应该装箱,反之,装箱: 用一个并查集维护连通分量集合,每次得到一种化合物(x, y)时检 ...

  4. UVA 10529-Dumb Bones(概率dp)

    题意: 给出放一个多米诺骨牌,向左向右倒的概率,求要放好n个骨牌,需要放置的骨牌的期望次数. 分析: 用到区间dp的思想,如果一个位置的左面右面骨牌都已放好,考虑,放中间的情况, dp[i]表示放好前 ...

  5. L-Gap Substrings(uva 10829)

    题意:有一种形如uvu形式的字符串,其中u是非空字符串,且V的长度正好为L,那么称这个字符串为L-Gap字符串 给出一个字符串S,以及一个正整数L,问S中有多少个L-Gap子串. /* 这道题用到一个 ...

  6. Minimum Sum LCM(uva 10791)

    题意(就是因为读错题意而wa了一次):给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 例如12,是1和12的最小公倍数,是3和4的最小公倍数,是1 ...

  7. Killer Problem (UVA 11898 )

    Problem You are given an array of N integers and Q queries. Each query is a closed interval [l, r]. ...

  8. POJ 2250 Compromise (UVA 531)

    LCS问题.基金会DP. 我很伤心WA非常多.就在LCS问题,需要记录什么路. 反正自己的纪录path错误,最后,就容易上当. 没有优化,二维阵列,递归打印,cin.eof() 来识别 end of ...

  9. uva 1639--精度处理方法之取对数(uva 1639)

    1639 - Candy Time limit: 3.000 seconds 1639 CandyLazyChild is a lazy child who likes candy very much ...

随机推荐

  1. js类型判别大合集

    1.typeof number,string,boolean,undefined,symbol,object,function 对象中除了函数为function,其他对象都判别为object, 缺陷: ...

  2. MySql数据库中where的使用

    SELECT * from runoob_tbl WHERE runoob_author='菜鸟教程'; MySQL 的 WHERE 子句的字符串比较是不区分大小写的. 你可以使用 BINARY 关键 ...

  3. HTML5<aside>元素

    HTML5<aside>元素用来定义页面文档中主区域内容之外的内容,但之外的内容是与主区域内容相关的. 实例: <article> <h1>这个页面是我开始用htm ...

  4. mysql 从陌生到熟练之----数据库备份恢复的实现方法

    mysql 从陌生到熟练之----数据库备份恢复的实现方法 MySQL数据库使用命令行备份|MySQL数据库备份命令 例如: 数据库地址:127.0.0.1 数据库用户名:root 数据库密码:roo ...

  5. 01_6_SERVLET如何从上一个页面取得参数

    01_6_SERVLET如何从上一个页面取得参数 1. sevlet实现 public void doGet(HttpServletRequest request, HttpServletRespon ...

  6. 创建自定义 Estimator

    ref 本文档介绍了自定义 Estimator.具体而言,本文档介绍了如何创建自定义 Estimator 来模拟预创建的 Estimator DNNClassifier 在解决鸢尾花问题时的行为.要详 ...

  7. 【最大权闭合子图 最小割】bzoj1497: [NOI2006]最大获利

    最大权闭合子图的模型:今天才发现dinic板子是一直挂的…… Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在 ...

  8. request response cookie session

    request 1. url传递参数 1)参数没有命名, 如: users/views def weather(request, city, year): print(city) print(year ...

  9. STM32——PWM基本知识及配置过程

    将通用定时器分为四个部分: 1,选择时钟 2,时基电路 3,输入捕获 4,输出比较 本节定时器PWM输出主要涉及到定时器框图右下方部分,即输出比较部分 和上一讲相同,时基时钟来源于内部默认时钟 对此有 ...

  10. POJ:1961-Period(寻找字符串循环节)

    Period Time Limit: 3000MS Memory Limit: 30000K Description For each prefix of a given string S with ...