题意:给定n,表示要放n个骨牌,每次放下骨牌,有可能向左倒的概率为pl,向右倒的概率为pr,如果倒下,会将那一侧的骨牌全部推倒,可以选择位置先后放骨牌,问说一种放骨牌次数最少的期望是多少。

/*
设dp[i]表示放置连续的i个期望的步数。
需要枚举放置的位置,即左边和右边有多少个,放置成功的期望步数为1/(1-pl-pr),如果放置失败了,那么就会是左边或右边的骨牌倒塌,此时重建的期望步数为dp[l]*pl+dp[r]*pr,所以可以得到转移方程:
dp[i]=min(dp[l]+dp[r]+(dp[l]*pl+dp[r]*pr+1)/(1-pl-pr))
*/
#include<iostream>
#include<cstdio>
#include<iostream>
#define N 1010
#define inf 1000000000
using namespace std;
int n;double dp[N],pl,pr;
int main(){
while(scanf("%d",&n)){
if(!n) break;
scanf("%lf%lf",&pl,&pr);
dp[]=;dp[]=/(-pl-pr);
for(int i=;i<=n;i++) dp[i]=inf;
for(int i=;i<=n;i++)
for(int j=;j<i;j++){
int l=j,r=i-j-;
dp[i]=min(dp[i],dp[l]+dp[r]+(dp[l]*pl+dp[r]*pr+)/(-pl-pr));
}
printf("%.2lf\n",dp[n]);
}
return ;
}

Dumb Bones(uva 10529)的更多相关文章

  1. 2018.09.09 UVa10529 - Dumb Bones(期望dp)

    传送门 期望dp好题. f[i]表示摆放i个的最小花费,于是f[i]可以从f[j]与f[i-j+1]转移过来了. 代码: #include<bits/stdc++.h> #define N ...

  2. UVA 10529 - Dumb Bones(概率+区间dp)

    UVA 10529 - Dumb Bones option=com_onlinejudge&Itemid=8&category=518&page=show_problem&am ...

  3. 并查集(UVA 1106)

    POINT: 把每个元素看成顶点,则一个简单化合物就是一条无向边,若存在环(即k对组合中有k种元素),则危险,不应该装箱,反之,装箱: 用一个并查集维护连通分量集合,每次得到一种化合物(x, y)时检 ...

  4. UVA 10529-Dumb Bones(概率dp)

    题意: 给出放一个多米诺骨牌,向左向右倒的概率,求要放好n个骨牌,需要放置的骨牌的期望次数. 分析: 用到区间dp的思想,如果一个位置的左面右面骨牌都已放好,考虑,放中间的情况, dp[i]表示放好前 ...

  5. L-Gap Substrings(uva 10829)

    题意:有一种形如uvu形式的字符串,其中u是非空字符串,且V的长度正好为L,那么称这个字符串为L-Gap字符串 给出一个字符串S,以及一个正整数L,问S中有多少个L-Gap子串. /* 这道题用到一个 ...

  6. Minimum Sum LCM(uva 10791)

    题意(就是因为读错题意而wa了一次):给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 例如12,是1和12的最小公倍数,是3和4的最小公倍数,是1 ...

  7. Killer Problem (UVA 11898 )

    Problem You are given an array of N integers and Q queries. Each query is a closed interval [l, r]. ...

  8. POJ 2250 Compromise (UVA 531)

    LCS问题.基金会DP. 我很伤心WA非常多.就在LCS问题,需要记录什么路. 反正自己的纪录path错误,最后,就容易上当. 没有优化,二维阵列,递归打印,cin.eof() 来识别 end of ...

  9. uva 1639--精度处理方法之取对数(uva 1639)

    1639 - Candy Time limit: 3.000 seconds 1639 CandyLazyChild is a lazy child who likes candy very much ...

随机推荐

  1. Mybatis学习记录(2)

    1.mybatis与hibernate不同 Mybatis和hibernate,mybatis不完全是一个ORM框架,因为Mybatis需要程序员自己编写sql语句.mybatis可以通过xml或注解 ...

  2. iOS小技巧–用runtime 解决UIButton 重复点击问题

    什么是这个问题 我们的按钮是点击一次响应一次, 即使频繁的点击也不会出问题, 可是某些场景下还偏偏就是会出问题. 通常是如何解决 我们通常会在按钮点击的时候设置这个按钮不可点击. 等待0.xS的延时后 ...

  3. 【状压dp】cf906C. Party

    需要稍加分析结论:还有一些小细节 Arseny likes to organize parties and invite people to it. However, not only friends ...

  4. NOIP2018 - 暑期博客整理

    暑假写的一些博客复习一遍.顺便再写一遍或者以现在的角度补充一点东西. 盛暑七月 初涉基环外向树dp&&bzoj1040: [ZJOI2008]骑士 比较经典的基环外向树dp.可以借鉴的 ...

  5. DNS 工作原理是什么,域名劫持、域名欺骗、域名污染又是什么

    DNS 工作原理是什么,域名劫持.域名欺骗.域名污染又是什么 2014年11月27日 10:05:40 阅读数:6726 标签: dns网络互联网顶级域名递归 更多 个人分类: 网络学习   一.DN ...

  6. paper:synthesizable finit state machine design techniques using the new systemverilog 3.0 enhancements之fsm1各种style的timing/area比较

    整体说,一般还是用2段式,再加上output encodecd/default -X技巧.

  7. 【php】【异步】php实现异步的几种方法

    请参考  4种php常用的异步执行方式 ajax 和 img 的 src 属性 系统指令调用 (在php代码里面调用系统指令) curl socket通信 ​

  8. python学习博客推荐

    https://www.liaoxuefeng.com/

  9. Word 借助VBA一键实现插入交叉引用

    最近写论文的时候,经常需要向上或向下插入题注的交叉引用,word 自带的界面往往需要操作多次,才能实现插入.而平时使用较多的只是交叉引用附近的题注,比如如图1.1所示,在图1.1中等,距离较远的引用则 ...

  10. python模块之shutil和zipfile

    shutil 模块 高级的 文件.文件夹.压缩包 处理模块 shutil.copyfileobj(fsrc, fdst[, length])将文件内容拷贝到另一个文件中 import shutil s ...