【ZOJ2112】【整体二分+树状数组】带修改区间第k大
The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with the query like to simply find the k-th smallest number of the given N numbers. They have developed a more powerful system such that for N numbers a[1], a[2], ..., a[N], you can ask it like: what is the k-th smallest number of a[i], a[i+1], ..., a[j]? (For some i<=j, 0<k<=j+1-i that you have given to it). More powerful, you can even change the value of some a[i], and continue to query, all the same.
Your task is to write a program for this computer, which
- Reads N numbers from the input (1 <= N <= 50,000)
- Processes M instructions of the input (1 <= M <= 10,000). These instructions
include querying the k-th smallest number of a[i], a[i+1], ..., a[j] and change
some a[i] to t.
Input
The first line of the input is a single number X (0 < X <= 4), the number
of the test cases of the input. Then X blocks each represent a single test case.
The first line of each block contains two integers N and M, representing N numbers
and M instruction. It is followed by N lines. The (i+1)-th line represents the
number a[i]. Then M lines that is in the following format
Q i j k or
C i t
It represents to query the k-th number of a[i], a[i+1], ..., a[j] and change
some a[i] to t, respectively. It is guaranteed that at any time of the operation.
Any number a[i] is a non-negative integer that is less than 1,000,000,000.
There're NO breakline between two continuous test cases.
Output
For each querying operation, output one integer to represent the result. (i.e.
the k-th smallest number of a[i], a[i+1],..., a[j])
There're NO breakline between two continuous test cases.
Sample Input
2
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3
Sample Output
3
6
3
6
【分析】
裸题,不说了。
按照这种方法的话,离线的带插入修改区间第K大也应该可以做了。
不过这题的经典作法是树状数组上套可持久化线段树,不过这样空间消耗会很大。
可能要用动态开点?
转一个用块状链表的:http://www.cnblogs.com/zhj5chengfeng/archive/2013/08/19/3268162.html
- /*
- 宋代晏殊
- 《蝶恋花·槛菊愁烟兰泣露》
- 槛菊愁烟兰泣露。罗幕轻寒,燕子双飞去。明月不谙离恨苦。斜光到晓穿朱户。
- 昨夜西风凋碧树。独上高楼,望尽天涯路。欲寄彩笺兼尺素。山长水阔知何处。
- */
- #include <iostream>
- #include <cstdio>
- #include <algorithm>
- #include <cstring>
- #include <vector>
- #include <utility>
- #include <iomanip>
- #include <string>
- #include <cmath>
- #include <queue>
- #include <assert.h>
- #include <map>
- #include <ctime>
- #include <cstdlib>
- #include <stack>
- #define LOCAL
- const int INF = ;
- const int MAXN = + ;
- using namespace std;
- struct QUERY{
- int x, y;
- int k, s, type, cur;//cur用来记录前面的值
- }q[MAXN], q1[MAXN], q2[MAXN];
- int Ans[MAXN];
- int tmp[MAXN], c[MAXN];
- int n, m, num, cnt;
- int data[MAXN];
- inline int lowbit(int x){return x&-x;}
- void add(int x, int val){
- while (x <= n){
- c[x] += val;
- x += lowbit(x);
- }
- return;
- }
- int sum(int x){
- int cnt = ;
- while (x > ){
- cnt += c[x];
- x -= lowbit(x);
- }
- return cnt;
- }
- //整体二分
- void solve(int l, int r, int L, int R){
- //这两个都是结束条件
- if (l > r) return;
- if (L == R){//更新答案
- for (int i = l; i <= r; i++)
- if (q[i].type == ) Ans[q[i].s] = L;
- return;
- }
- int mid = (L + R) >> ;
- for (int i = l; i <= r; i++){
- if (q[i].type == && q[i].y <= mid) add(q[i].x, );
- else if (q[i].type == && q[i].y <= mid) add(q[i].x, -);
- else if (q[i].type == ) tmp[i] = sum(q[i].y) - sum(q[i].x - );
- }
- //更新完了就要清除标记了
- for (int i = l; i <= r; i++){
- if (q[i].type == && q[i].y <= mid) add(q[i].x, -);
- else if (q[i].type == && q[i].y <= mid) add(q[i].x, );
- }
- int l1 = , l2 = ;
- for (int i = l; i <= r; i++){
- if (q[i].type == ){
- //不用id就直接改
- if (q[i].cur + tmp[i] > q[i].k - ) q1[++l1] = q[i];
- else {
- q[i].cur += tmp[i];
- q2[++l2] = q[i];
- }
- }else{
- if (q[i].y <= mid) q1[++l1] = q[i];
- else q2[++l2] = q[i];
- }
- }
- for (int i = ; i <= l1; i++) q[i + l - ] = q1[i];
- for (int i = ; i <= l2; i++) q[i + l1 + l - ] = q2[i];
- solve(l, l + l1 - , L, mid);
- solve(l + l1, r, mid + , R);
- }
- void init(){
- memset(c, , sizeof(c));
- cnt = num = ;//指针初始化,num记录总的操作数量
- scanf("%d%d", &n, &m);
- for (int i = ; i <= n; i++){
- num++;
- scanf("%d", &data[i]);
- q[num].x = i;q[num].type = ;//1代表插入
- q[num].s = ;q[num].y = data[i];//没有用y就当val用
- }
- for (int i = ; i <= m; i++){
- char str[];
- num++;
- scanf("%s", str);
- if (str[] == 'Q'){
- int l, r, k;
- scanf("%d%d%d", &l, &r, &k);
- q[num].x = l;q[num].y = r;
- q[num].type = ; q[num].s = ++cnt;
- q[num].k = k;
- }else{
- int l, x;
- scanf("%d%d", &l, &x);
- q[num].x = l;q[num].y = data[l];//2为删除
- q[num].type = ;q[num].s = ;
- q[++num].x = l;
- q[num].y = x;//删除后插入
- q[num].type = ;
- q[num].s = ;
- data[l] = x;//注意这里一定要改,不然会影响到后面的更新
- }
- }
- for (int i = ; i <= num; i++) q[i].cur = ;
- }
- int main(){
- int T;
- scanf("%d", &T);
- while (T--){
- init();
- solve(, num, , INF);
- for (int i = ; i <= cnt; i++) printf("%d\n", Ans[i]);
- }
- return ;
- }
【ZOJ2112】【整体二分+树状数组】带修改区间第k大的更多相关文章
- 主席树套树状数组——带修区间第k大zoj2112
主席树带修第k大 https://www.cnblogs.com/Empress/p/4659824.html 讲的非常好的博客 首先按静态第k大建立起一组权值线段树(主席树) 然后现在要将第i个值从 ...
- 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...
- 【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- 【BZOJ-2527】Meteors 整体二分 + 树状数组
2527: [Poi2011]Meteors Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 831 Solved: 306[Submit][Stat ...
- 【bzoj2527】[Poi2011]Meteors 整体二分+树状数组
题目描述 有N个成员国.现在它发现了一颗新的星球,这颗星球的轨道被分为M份(第M份和第1份相邻),第i份上有第Ai个国家的太空站. 这个星球经常会下陨石雨.BIU已经预测了接下来K场陨石雨的情况.BI ...
- BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组
BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组 Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位 ...
- 【bzoj4009】[HNOI2015]接水果 DFS序+树上倍增+整体二分+树状数组
题目描述 给出一棵n个点的树,给定m条路径,每条路径有一个权值.q次询问求一个路径包含的所有给定路径中权值第k小的. 输入 第一行三个数 n和P 和Q,表示树的大小和盘子的个数和水果的个数. 接下来n ...
- 少年,想学带修改主席树吗 | BZOJ1901 带修改区间第k小
少年,想学带修改主席树吗 | BZOJ1901 带修改区间第k小 有一道题(BZOJ 1901)是这样的:n个数,m个询问,询问有两种:修改某个数/询问区间第k小. 不带修改的区间第k小用主席树很好写 ...
- BZOJ 2527 [POI2011]MET-Meteors (整体二分+树状数组)
题目大意:略 洛谷传送门 整体二分裸题 考虑只有一个国家的情况如何处理 对询问数量二分答案,暴力$O(m)$打差分,求前缀和验证,时间是$O(mlogK)$ 如果有$n$个国家,就是$O(nmlogK ...
随机推荐
- 【转】Android Fragment 基本介绍--不错
原文网址:http://www.cnblogs.com/mengdd/archive/2013/01/08/2851368.html Fragment Android是在Android 3.0 (AP ...
- pojo类和vo类分别是什么
转:http://blog.sina.com.cn/s/blog_4adc4b090101kuks.html vo有两种说法,一个是viewObject,一个是valueObject.. 就拿前者来说 ...
- [转]33 useful Keyboard Shortcuts for Run commond
原文: http://www.shortcutworld.com/en/win/Run-command.html 1. Calling Run CommandWin + r ...
- iOS 多线程学习笔记 —— GCD
本文复制.参考自文章:iOS多线程编程之Grand Central Dispatch(GCD)介绍和使用 ,主要为了加强个人对知识的理解和记忆,不做他用.原作者声明: 著作权声明:本文由http:// ...
- ZOJ Problem Set - 3758 素数
Singles' Day Time Limit: 2 Seconds Memory Limit: 65536 KB Singles' Day(or One's Day), an unofficial ...
- poj 2631 Roads in the North【树的直径裸题】
Roads in the North Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2359 Accepted: 115 ...
- android 随手记 倒计时
class CountDownUtils extends CountDownTimer { public CountDownUtils(long millisInFuture, long countD ...
- 数据分析:Weka,Matlab,R,SPSS,SAS等分析软件的入门
1 功能角度 weka是机器学习方面的工具(开源).spss是数学工具(商业工具). 具体的说,weka的主要功能是模式分类,或者模式识别或者回归.包括特征的降维(PCA),特征选择,训练模型以及对测 ...
- head first-----decorate design pattern
浅谈设计模式之------装饰者模式 首先给出装饰者模式的定义吧: 动态的将责任附加到对象上,若是要扩展功能,装饰者提供了比继承更加具有弹性的替代方案. 其中 ...
- android 21 隐式意图启动系统预定义activity
Intent intent=new Intent(LoginActivity.this, MainActivity.class);//显示意图启动,显示从一个activity到另一个activity, ...