统计学习方法——P1
背景基础知识备忘
平均差
MD=(∑|xi-x'|)/n
加权平均差
A.D=(∑|xi-x'|fi)/∑fi
方差
标准差
SD=方差的平方根
设X是一个随机变量,x是任意实数,函数称为X的分布函数。有时也记为X~F(x) 对于任意实数
期望
离散型:
离散型随机变量的一切可能的取值xi与对应的概率Pi(=xi)之积的和称为该离散型随机变量的数学期望
连续型:
若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。
监督学习:
目标:学习出一个模型对于给定输入,对其相应输出做出很好的预测
训练数据集:T={(xi,yi)} i=1,2,3.......N
统计学习要素:
方法=模型+策略+算法
模型:所要学习的条件概率分布或者决策函数
策略:略 损失最小的最优化的目标函数
算法:学习模型的计算方法
exp:
损失函数 L(Y,f(x)) f(x)为预测值:
0-1损失:
L(Y,f(x))=1 Y !=f(x)
L(Y,f(x))=0 Y==f(x)
平方损失:
L(Y,f(x))=∑(Y-x')2
绝对损失:
L(Y,f(x))=|Y-f(x)|
对数损失 对数似然损失函数:
L(Y,P(Y|X))=-logP(Y|X)
损失期望函数:
Rexp (f)=Ep [L(Y,f(x))]=∫x*y L(y,f(x))p(x,y)dxdy 为模型联合分布的期望损失
由于对联合分布概率 p(x,y) 未知 对训练集T有经验损失为
Rexp (f)=(∑L(yi,f(xi)))/N i=1,2,3,4.......N 为模型的平均损失
由大数定理:当样本容量N趋向于无穷时,经验损失趋向于期望损失 由于N在实际问题中不可能趋向于无穷,用平均损失估计期望损失不准确,必须对他校正
方法有:1 经验风险最小化 2 结构风险最小化
经验风险最小化: 对于假设空间F
min (∑L(yi,f(xi)))/N 的模型为最佳模型
结构风险最小化:
min (∑L(yi,f(xi)))/N+λJ(f) J(f)为模型复杂度 模型越复杂 J(f)越大 反之亦然 λ为系数 用来权衡经验风险和模型复杂度
以上为背景知识,下一篇看模型评估以及模型选择
统计学习方法——P1的更多相关文章
- 【NLP】基于统计学习方法角度谈谈CRF(四)
基于统计学习方法角度谈谈CRF 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...
- 统计学习方法 --- 感知机模型原理及c++实现
参考博客 Liam Q博客 和李航的<统计学习方法> 感知机学习旨在求出将训练数据集进行线性划分的分类超平面,为此,导入了基于误分类的损失函数,然后利用梯度下降法对损失函数进行极小化,从而 ...
- 统计学习方法笔记--EM算法--三硬币例子补充
本文,意在说明<统计学习方法>第九章EM算法的三硬币例子,公式(9.5-9.6如何而来) 下面是(公式9.5-9.8)的说明, 本人水平有限,怀着分享学习的态度发表此文,欢迎大家批评,交流 ...
- 统计学习方法:KNN
作者:桂. 时间:2017-04-19 21:20:09 链接:http://www.cnblogs.com/xingshansi/p/6736385.html 声明:欢迎被转载,不过记得注明出处哦 ...
- 统计学习方法:罗杰斯特回归及Tensorflow入门
作者:桂. 时间:2017-04-21 21:11:23 链接:http://www.cnblogs.com/xingshansi/p/6743780.html 前言 看到最近大家都在用Tensor ...
- 统计学习方法:核函数(Kernel function)
作者:桂. 时间:2017-04-26 12:17:42 链接:http://www.cnblogs.com/xingshansi/p/6767980.html 前言 之前分析的感知机.主成分分析( ...
- 统计学习方法学习(四)--KNN及kd树的java实现
K近邻法 1基本概念 K近邻法,是一种基本分类和回归规则.根据已有的训练数据集(含有标签),对于新的实例,根据其最近的k个近邻的类别,通过多数表决的方式进行预测. 2模型相关 2.1 距离的度量方式 ...
- 李航《统计学习方法》CH01
CH01 统计学方法概论 前言 章节目录 统计学习 监督学习 基本概念 问题的形式化 统计学习三要素 模型 策略 算法 模型评估与模型选择 训练误差与测试误差 过拟合与模型选择 正则化与交叉验证 正则 ...
- 统计学习方法c++实现之六 支持向量机(SVM)及SMO算法
前言 支持向量机(SVM)是一种很重要的机器学习分类算法,本身是一种线性分类算法,但是由于加入了核技巧,使得SVM也可以进行非线性数据的分类:SVM本来是一种二分类分类器,但是可以扩展到多分类,本篇不 ...
随机推荐
- 初识Angular2
Angular2是面向未来的科技,要求浏览器支持ES6+,我们现在要尝试的话,需要加一些 垫片来抹平当前浏览器与ES6的差异: angular2-polyfills - 为ES5浏览器提供ES6特性支 ...
- Codevs 3233 古道
3233 古道 时间限制: 1 s 空间限制: 8000 KB 题目等级:**白银 Silver** [传送门](http://codevs.cn/problem/3233/) 题目描述 Descri ...
- initrd.gz的解压和制作
解压: gzip -d initrd.gz cpio -idmv < initrd 压缩: find . | cpio -o -c > initrd.img gzip initrd.img ...
- css盒子模型、文档流、相对与绝对定位、浮动与清除模型
一.CSS中的盒子模型 标准模式和混杂模式(IE).在标准模式下浏览器按照规范呈现页面:在混杂模式下,页面以一种比较宽松的向后兼容的方式显示.混杂模式通常模拟老式浏览器的行为以防止老站点无法工作. h ...
- isset(), empty()
isset()测试$a = '';isset($a); // true $a = FALSE;var_dump(isset($a)); // true $a = NULL;var_dump(isset ...
- windows下Apache配置SSL安全连接
什么是SSL? SSL(Secure Socket Layer): 是为Http传输提供安全的协议,通过证书认证来确保客户端和网站服务器之间的数据是安全.Open SSL下载地址:http://www ...
- C语言中字符型和字符串型的区别?
C语言中只有字符型类型,没有字符串型类型.字符类型用一个带符号的8位二进制编码表示,其性质与int相同,只是只有一个字节.表示字符的ASCII编码使用其中的0~127,所以要明白字符类型(char)其 ...
- C语言全局变量的定义与声明
C语言中全局变量的定义与声明困扰着许多C语言初学者.本文讲述了全局变量定义与声明的用法,而且本为也将阐述这种用法的内在原理.我们先从两个错误例子引入,以下两个例程都在vc6.0平台上测试. 两种错误例 ...
- Excel下拉框选项切换行颜色切换
选择行颜色变化范围 开始-条件格式-新创建规则-"使用公式-" 录入:=$104B="确认" 点击"格式(F)-"->填充,选择填充颜 ...
- WebForm中TreeView的使用
protected void Page_Load(object sender, EventArgs e) { DatabaseBind(); ...