poj 2932 Coneology(扫描线+set)
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 3574 | Accepted: 680 |
Description
A student named Round Square loved to play with cones. He would arrange cones with different base radii arbitrarily on the floor and would admire the intrinsic beauty of the arrangement. The student even began theorizing about how some cones dominate other cones: a cone A dominates another cone B when cone B is completely within the cone A. Furthermore, he noted that there are some cones that not only dominate others, but are themselves dominated, thus creating complex domination relations. After studying the intricate relations of the cones in more depth, the student reached an important conclusion: there exist some cones, all-powerful cones, that have unique properties: an all-powerful cone is not dominated by any other cone. The student became so impressed by the mightiness of the all-powerful cones that he decided to worship these all-powerful cones.
Unfortunately, after having arranged a huge number of cones and having worked hard on developing this grandiose cone theory, the student become quite confused with all these cones, and he now fears that he might worship the wrong cones (what if there is an evil cone that tries to trick the student into worshiping it?). You need to help this student by finding the cones he should worship.
Input
The input le specifies an arrangement of the cones. There are in total N cones (1 ≤ N ≤ 40000). Cone i has radius and height equal to Ri, i = 1 … N. Each cone is hollow on the inside and has no base, so it can be placed over another cone with smaller radius. No two cones touch.
The first line of the input contains the integer N. The next N lines each contain three real numbers Ri, xi, yi separated by spaces, where (xi, yi) are the coordinates of the center of the base of cone i.
Output
The first line of the output le should contain the number of cones that the student should worship. The second line contains the indices of the cones that the student should worship in increasing order. Two consecutive numbers should be separated by a single space.
Sample Input
- 5
- 1 0 -2
- 3 0 3
- 10 0 0
- 1 0 1.5
- 10 50 50
Sample Output
- 2
- 3 5
Source
【思路】
扫描线
将一个园最左点与最右点看作事件,按从左向右的顺序扫描。
如果扫描到最左点则判断在其上方和下方且最近的圆的包含关系,当不被上下两圆包含时累计答案。
如果最右点则删除该圆。
用set组织数据以实现查找与删除的功能。
【代码】
- #include<set>
- #include<map>
- #include<cmath>
- #include<cstdlib>
- #include<cstdio>
- #include<cstring>
- #include<algorithm>
- #define mp(a,b) make_pair(a,b)
- #define FOR(a,b,c) for(int a=(b);a<=(c);a++)
- #define pr pair<double,int>
- using namespace std;
- const int N = +;
- double x[N],y[N],r[N];
- pr l[N*]; int tot;
- set<pr> S;
- set<pr> ::iterator it;
- int n,ans,vis[N];
- bool inside(int a,int b) {
- return (x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b])<=r[b]*r[b];
- }
- int main() {
- scanf("%d",&n);
- FOR(i,,n) scanf("%lf%lf%lf",&r[i],&x[i],&y[i]);
- FOR(i,,n) {
- l[++tot]=mp(x[i]-r[i],i);
- l[++tot]=mp(x[i]+r[i],i+n);
- }
- sort(l+,l+tot+);
- FOR(i,,tot) {
- int now=l[i].second;
- if(now<=n) {
- it=S.lower_bound(mp(y[now],now));
- if(it!=S.end() && inside(now,it->second)) continue;
- if(it!=S.begin() && inside(now,(--it)->second)) continue;
- vis[now]=; ans++;
- S.insert(mp(y[now],now));
- }
- else
- S.erase(mp(y[now-n],now-n));
- }
- printf("%d\n",ans);
- FOR(i,,n) if(vis[i]) printf("%d ",i);
- return ;
- }
poj 2932 Coneology(扫描线+set)的更多相关文章
- POJ 2932 圆扫描线
求n个圆中没有被包含的圆.模仿扫描线从左往右扫,到左边界此时如有3个交点,则有3种情况,以此判定该圆是否被离它最近的圆包含,而交点和最近的圆可以用以y高度排序的Set来维护.因此每次到左边界插入该圆, ...
- POJ 2932 Coneology(扫描线)
[题目链接] http://poj.org/problem?id=2932 [题目大意] 给出N个两两没有公共点的圆,求所有不包含于其它圆内部的圆 [题解] 我们计算出所有点在圆心所有y位置的x值, ...
- poj 2932 Coneology (扫描线)
题意 平面上有N个两两不相交的圆,求全部最外层的,即不被其它圆包括的圆的个数并输出 思路 挑战程序竞赛P259页 代码 /* ************************************* ...
- POJ 2932 Coneology计算最外层圆个数
平面上有n个两两没有公共点的圆,i号圆的圆心在(xi,yi),半径为ri,编号从1开始.求所有最外层的,即不包含于其他圆内部的圆.输出符合要求的圆的个数和编号.n<=40000. (注意此题无相 ...
- TTTTTTTTTTTTTTT poj 2932 Coneology 平面扫描+STL
题目链接 题意:有n个圆,圆之间不存在相交关系,求有几个不被其他任何圆包含的圆,并输出圆的编号: #include <iostream> #include <cstdio> # ...
- Coneology(POJ 2932)
原题如下: Coneology Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 4937 Accepted: 1086 D ...
- POJ 1151 Atlantis (扫描线+线段树)
题目链接:http://poj.org/problem?id=1151 题意是平面上给你n个矩形,让你求矩形的面积并. 首先学一下什么是扫描线:http://www.cnblogs.com/scau2 ...
- N - Picture - poj 1177(扫描线求周长)
题意:求周长的,把矩形先进行融合后的周长,包括内周长 分析:刚看的时候感觉会跟棘手,让人无从下手,不过学过扫描线之后相信就很简单了吧(扫描线的模板- -),还是不说了,下面是一精确图,可以拿来调试数据 ...
- poj2932 Coneology (扫描线)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Coneology Time Limit: 5000MS Memory Lim ...
随机推荐
- caffe源码阅读(2)-Layer
神经网络是由层组成的,深度神经网络就是层数多了.layer对应神经网络的层.数据以Blob的形式,在不同的layer之间流动.caffe定义的神经网络已protobuf形式定义.例如: layer { ...
- bzoj1131: [POI2008]Sta
思路:首先先求出以1为根的答案,然后考虑由i转移到i的儿子的答案的变化,显然以son[i]为根的子树的所有结点的深度都会减一,其余的点的深度都会加一,然后就可以直接O(n)求出所有结点的答案,然后取m ...
- HTTP_USER_AGENT
<!DOCTYPE html><html><head><meta charset="UTF-8" /><title>We ...
- 关于C# Winform 程序开机自动启动
1.程序运行时调用下面方法即可. /// <summary> /// 设置开机自动启用 /// </summary> private void SetAutoStart() { ...
- jquery 缓冲加载图片插件 jquery.lazyload
第一:加入jquery 第二:加入jquery.lazy.load.js文件 第三:在网页中加<script> $(document).ready(function(){ $(" ...
- php发送http请求
http请求有get,post. php发送http请求有三种方式[我所知道的有三种,有其他的告诉我]. file_get_contents();详情见:http://www.cnblogs.com/ ...
- 在 IIS MIME 类型中添加 md 扩展名
最近在了解 Knowledge Base (知识库)的内容,对两个平台比较感兴趣,一个是 Raneto,一个是 MDwiki,两者都是使用md文件作为内容存储. 需要注意的是,使用IIS部署网站后,需 ...
- NET Core 整合Autofac和Castle
NET Core 整合Autofac和Castle 阅读目录 前言: 1.ASP.NET Core中的Autofac 2.整合Castle的DynamicProxy 3.注意事项 回到目录 前言: 除 ...
- iOS开发者计划(转)
苹果对软件和开发者的管理十分严格,你只有加入了Apple Developer计划之后,才能将你的软件放到真机上运行或者发布到App Store上去.这种方法看似麻烦,但是却有效的解决了盗版和劣质软件充 ...
- 修改.htaccess实现子目录绑定示例分享
<IfModule mod_rewrite.c>RewriteEngine On RewriteBase /# 把 www.jb51.net改为你要绑定的域名.# 如果是域名:Rewri ...