Drainage Ditches
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 63924   Accepted: 24673

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50
题意:把池塘(编号1)里面的水通过若干个渠沟排到小溪(编号n)里面,每个渠沟都有最大容量,求能从池塘排出来的最大水量。 最大流模版
#include<stdio.h>
#include<string.h>
#include<stack>
#include<queue>
#include<algorithm>
#define MAX 1100
#define INF 0x7fffff
using namespace std;
struct node
{
int from,to,cap,flow,next;
}edge[MAX];
int n,m;
int ans,head[MAX];
int vis[MAX];//用bfs求路径时判断当前点是否进队列,
int dis[MAX];//当前点到源点的距离
int cur[MAX];//保存该节点正在参加计算的弧避免重复计算
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v,int w)
{
edge[ans].from=u;
edge[ans].to=v;
edge[ans].cap=w;
edge[ans].flow=0;
edge[ans].next=head[u];
head[u]=ans++;
}
void getmap()
{
int i,a,b,c;
while(n--)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);//正向建边c为最大容量
add(b,a,0);//反向建边,
}
}
int bfs(int beg,int end)
{
int i;
memset(vis,0,sizeof(vis));
memset(dis,-1,sizeof(dis));
queue<int>q;
while(!q.empty())
q.pop();
vis[beg]=1;
dis[beg]=0;
q.push(beg);
while(!q.empty())
{
int u=q.front();
q.pop();
for(i=head[u];i!=-1;i=edge[i].next)//遍历所有的与u相连的边
{
node E=edge[i];
if(!vis[E.to]&&E.cap>E.flow)//如果边未被访问且流量未满继续操作
{
dis[E.to]=dis[u]+1;//建立层次图
vis[E.to]=1;//将当前点标记
if(E.to==end)//如果当前点搜索到终点则停止搜索 返回1表示有从原点到达汇点的路径
return 1;
q.push(E.to);//将当前点入队
}
}
}
return 0;//返回0表示未找到从源点到汇点的路径
}
int dfs(int x,int a,int end)//把找到的这条边上的所有当前流量加上a(a是这条路径中的最小残余流量)
{
//int i;
if(x==end||a==0)//如果搜索到终点或者最小的残余流量为0
return a;
int flow=0,f;
for(int& i=cur[x];i!=-1;i=edge[i].next)//i从上次结束时的弧开始
{
node& E=edge[i];
if(dis[E.to]==dis[x]+1&&(f=dfs(E.to,min(a,E.cap-E.flow),end))>0)//如果
{//bfs中我们已经建立过层次图,现在如果 dis[E.to]==dis[x]+1表示是我们找到的路径
//如果dfs>0表明最小的残余流量还有,我们要一直找到最小残余流量为0
E.flow+=f;//正向边当前流量加上最小的残余流量
edge[i^1].flow-=f;//反向边
flow+=f;//总流量加上f
a-=f;//最小可增流量减去f
if(a==0)
break;
}
}
return flow;//所有边加上最小残余流量后的值
}
int Maxflow(int beg,int end)
{
int flow=0;
while(bfs(beg,end))//存在最短路径
{
memcpy(cur,head,sizeof(head));//复制数组
flow+=dfs(beg,INF,end);
}
return flow;//最大流量
}
int main()
{
int i,j;
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
getmap();
printf("%d\n",Maxflow(1,m));
}
return 0;
}

  

poj 1273 Drainage Ditches【最大流入门】的更多相关文章

  1. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  2. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  3. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  4. POJ 1273 Drainage Ditches 最大流

    这道题用dinic会超时 用E_K就没问题 注意输入数据有重边.POJ1273 dinic的复杂度为O(N*N*M)E_K的复杂度为O(N*M*M)对于这道题,复杂度是相同的. 然而dinic主要依靠 ...

  5. POJ 1273 Drainage Ditches | 最大流模板

    #include<cstdio> #include<algorithm> #include<cstring> #include<queue> #defi ...

  6. POJ 1273 Drainage Ditches(最大流Dinic 模板)

    #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int n, ...

  7. poj 1273 Drainage Ditches(最大流)

    http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  8. POJ 1273 Drainage Ditches (网络最大流)

    http://poj.org/problem? id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  9. 网络流最经典的入门题 各种网络流算法都能AC。 poj 1273 Drainage Ditches

    Drainage Ditches 题目抽象:给你m条边u,v,c.   n个定点,源点1,汇点n.求最大流.  最好的入门题,各种算法都可以拿来练习 (1):  一般增广路算法  ford() #in ...

随机推荐

  1. 视图--bai

    /*视图的必要性 create view population_all_view as select xxxx 详细信息 from qgck where rownum<500 -- sql语句不 ...

  2. javascript 闭包暴露句柄和命名冲突的解决方案

    暴露 最近在琢磨前端Js开源项目的东西,然后就一直好奇他们是怎么句柄暴露出来的,特整理一下两种方法. 将对象悬挂到window下面. 不使用var进行变量声明.下面上代码: (function(win ...

  3. 关于 Java 性能监控您不知道的 5 件事,第 1 部分

    责怪糟糕的代码(或不良代码对象)并不能帮助您发现瓶颈,提高 Java? 应用程序速度,猜测也不能帮您解决.Ted Neward 引导您关注 Java 性能监控工具,从5 个技巧开始,使用Java 5 ...

  4. python编码基础知识

    http://www.javaeye.com/topic/560229 一 预备知识 字符集1, 常用字符集分类ASCII及其扩展字符集作用:表语英语及西欧语言.位数:ASCII是用7位表示的,能表示 ...

  5. solr的原子更新/局部更新

    solr支持三种类型的原子更新: set - to set a field. add - to add to a multi-valued field. inc - to increment a fi ...

  6. Java集合类之HashMap

    package com.test; import java.util.*; public class Demo7_3 { public static void main(String[] args) ...

  7. tlplayer for ios V1.1.1加密测试版本

    2014-06-22 修正稳定性. 大家还是可以从原来的下载地址下载. 此为tlplayer for ios版本,可以播放加密视频与非加密视频. 加密视频下载地址:http://blog.csdn.n ...

  8. 转载:简化IT程序员工作生活的4个窍门

    如果可以简化你的生活——少做枯燥的任务,将时间真正地用于完成事情,你愿不愿意去尝试?下面就让我一起来学一下如何让程序员工作生活变得简单的小窍门.如果你敢于倾听自己的心声,你会发现自己一天中的大多数时间 ...

  9. URAL1017. Staircases

    链接 简单递推 #include <iostream> #include<cstdio> #include<cstring> #include<algorit ...

  10. WPF——绑定数据库数据(Listview)

    一.首先先画一个窗体,放进一个Listview 然后给每列起好名字,并且绑定的数据是临时表的列名 二.造一个临时表用来存储数据,并且将扔进去的Listview绑定到这个临时表DataTable上面 p ...