import java.io.*;
import weka.classifiers.*;
import weka.classifiers.meta.Vote;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.SelectedTag;
import weka.core.converters.ArffLoader;
public class test {

/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Instances tranIns=null; //训练数据
Instances testIns=null; //测试数据
Classifier cfs1=null; //分类器1
Classifier cfs2=null; //分类器2
Classifier cfs3=null; //分类器3
Classifier []cfsArray=new Classifier[3]; //分类器数组
try
{
File file=new File("C://Program Files//Weka-3-6//data//segment-challenge.arff"); //训练数据
ArffLoader loader=new ArffLoader();
loader.setFile(file);
tranIns=loader.getDataSet(); //读入数据

file=new File("C://Program Files//Weka-3-6//data//segment-test.arff"); //测试数据
loader.setFile(file);
testIns=loader.getDataSet();

testIns.setClassIndex(testIns.numAttributes()-1); //设置类别的位置
tranIns.setClassIndex(tranIns.numAttributes()-1);

cfs1=(Classifier)Class.forName("weka.classifiers.bayes.NaiveBayes").newInstance(); //算法
cfs2=(Classifier)Class.forName("weka.classifiers.trees.J48").newInstance();
cfs3=(Classifier)Class.forName("weka.classifiers.rules.ZeroR").newInstance();
cfsArray[0]=cfs1;
cfsArray[1]=cfs2;
cfsArray[2]=cfs3;

//分类器的决策方式
Vote ensemble=new Vote();
SelectedTag tag1=new SelectedTag(Vote.MAJORITY_VOTING_RULE,Vote.TAGS_RULES);//(投票)
ensemble.setCombinationRule(tag1);
ensemble.setClassifiers(cfsArray);
ensemble.setSeed(2); //设置随机种子
ensemble.buildClassifier(tranIns); //训练分类器

Instance testInst;
Evaluation testingEvaluation1=new Evaluation(testIns); //检测分类模型的类
Evaluation testingEvaluation2=new Evaluation(testIns);
Evaluation testingEvaluation3=new Evaluation(testIns);
Evaluation testingEvaluation4=new Evaluation(testIns);
int length=testIns.numInstances();

//单独学习
for(int i=0;i<length;i++)
{
testInst=testIns.instance(i);
testingEvaluation1.evaluateModelOnceAndRecordPrediction(cfs1, testInst);
}
System.out.println("分类正确率:"+(1- testingEvaluation1.errorRate()));

for(int i=0;i<length;i++)
{
testInst=testIns.instance(i);
testingEvaluation2.evaluateModelOnceAndRecordPrediction(cfs2, testInst);
}
System.out.println("分类正确率:"+(1- testingEvaluation2.errorRate()));

for(int i=0;i<length;i++)
{
testInst=testIns.instance(i);
testingEvaluation3.evaluateModelOnceAndRecordPrediction(cfs3, testInst);
}
System.out.println("分类正确率:"+(1- testingEvaluation3.errorRate()));

//集成学习
for(int i=0;i<length;i++)
{
testInst=testIns.instance(i);
testingEvaluation4.evaluateModelOnceAndRecordPrediction(ensemble, testInst);
}
System.out.println("分类正确率:"+(1- testingEvaluation4.errorRate()));
}
catch(Exception e)
{
e.printStackTrace();
}

}

}

weka 集成学习的更多相关文章

  1. Ensemble_learning 集成学习算法 stacking 算法

    原文:https://herbertmj.wikispaces.com/stacking%E7%AE%97%E6%B3%95 stacked 产生方法是一种截然不同的组合多个模型的方法,它讲的是组合学 ...

  2. 集成学习之Adaboost算法原理小结

    在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系.前者的代表算法就是是boostin ...

  3. 使用sklearn进行集成学习——实践

    系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 Random Forest和Gradient Tree Boosting ...

  4. 使用sklearn进行集成学习——理论

    系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 前言2 集成学习是什么?3 偏差和方差 3.1 模型的偏差和方差是什么? ...

  5. 集成学习原理:Adaboost

    集成学习通过从大量的特征中挑出最优的特征,并将其转化为对应的弱分类器进行分类使用,从而达到对目标进行分类的目的. 核心思想 它是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器), ...

  6. 集成学习(Ensembling Learning)

    集成学习(Ensembling Learning) 标签(空格分隔): 机器学习 Adabost 对于一些弱分类器来说,如何通过组合方法构成一个强分类器.一般的思路是:改变训练数据的概率分布(权值分布 ...

  7. Ensemble learning(集成学习)

    集成学习:是目前机器学习的一大热门方向,所谓集成学习简单理解就是指采用多个分类器对数据集进行预测,从而提高整体分类器的泛化能力. 我们在前面介绍了.所谓的机器学习就是通过某种学习方法在假设空间中找到一 ...

  8. 集成学习---bagging and boosting

    作为集成学习的二个方法,其实bagging和boosting的实现比较容易理解,但是理论证明比较费力.下面首先介绍这两种方法. 所谓的集成学习,就是用多重或多个弱分类器结合为一个强分类器,从而达到提升 ...

  9. [转]使用sklearn进行集成学习——理论

    转:http://www.cnblogs.com/jasonfreak/p/5657196.html 目录 1 前言2 集成学习是什么?3 偏差和方差 3.1 模型的偏差和方差是什么? 3.2 bag ...

随机推荐

  1. about compiler synergy

    ---恢复内容开始--- you can read this page: link->; you hava insalled Cmake on you window system. of cao ...

  2. hdu 5172 GTY's gay friends

    GTY's gay friends 题意:给n个数和m次查询:(1<n,m<1000,000);之后输入n个数值(1 <= ai <= n):问下面m次查询[L,R]中是否存在 ...

  3. OFBiz之SVN下载地址

    trunk: $ svn co http://svn.apache.org/repos/asf/ofbiz/trunk ofbiz release13.07: $ svn co http://svn. ...

  4. Winodws live writer

    发布一篇试试.

  5. java 中 sleep(1000) 和 wait(1000) 的区别?

    1.首先 sleep 方法是Thread类中的静态方法,他的作用是使当前线程暂时睡眠指定的时间,可以不用放在synchronized方法或者代码块中,但是 wait 方法是Object类的方法,它是使 ...

  6. 通过I2C总线向EEPROM中写入数据,记录开机次数

    没买板子之前,用protues画过电路图,实现了通过i2c总线向EEPROM中写入和读出数据. 今天,在自己买的板子上面写关于i2c总线的程序,有个地方忘了延时,调程序的时候很蛋疼.下面说说我对I2c ...

  7. objective_C 优缺点

    objective-c语言的优缺点 objc优点: 1) Cateogies 2) Posing3) 动态识别4) 指标计算5)弹性讯息传递6) 不是一个过度复杂的 C 衍生语言7) Objectiv ...

  8. CAShapeLayer--备用

    之前讲过CALayer动画相关知识,再来看看更加复杂的CAShapeLayer相关的动画知识. 普通CALayer在被初始化时是需要给一个frame值的,这个frame值一般都与给定view的boun ...

  9. 关于 Java 性能监控您不知道的 5 件事,第 1 部分

    责怪糟糕的代码(或不良代码对象)并不能帮助您发现瓶颈,提高 Java? 应用程序速度,猜测也不能帮您解决.Ted Neward 引导您关注 Java 性能监控工具,从5 个技巧开始,使用Java 5 ...

  10. css3 旋转出现动画

    @-moz-keyframes daf{ 0% { -moz-transform: rotate(-360deg) scale(0.2); -webkit-transform: rotate(-360 ...