BZOJ 4052 Magical GCD
Description
给出一个长度在\(100000\)以内的正整数序列,大小不超过\(10^{12}\)。求一个连续子序列,使得在所有的连续子序列中,它们的GCD值乘以它们的长度最大。
Input
第一行一个整数\(T\),表示数据组数。
对于每组数据第一行一个整数\(N\),表示序列长度。接下来一行有\(N\)个整数,表示序列中的每个元素。
Output
对于每组数据,输出序列中所有连续子段中最大的GCD乘长度。
Sample Input
1
5
30 60 20 20 20
Sample Output
80
HINT
\(N \le 100000\)
由于gcd每次变化至少减少一半,序列中本质不同的gcd子段只有\(O(nlogn)\)个。对于每个位置\(i\),我们枚举一个gcd值d,二分出一个最小的\(j\)使得\(gcd_{seq_{j \sim i}} = d\)。这个可以用ST表实现,复杂度\(O(nlog^{2}n) \times O(gcd)\)。
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long ll;
#define maxn (100010)
ll rmq[20][maxn]; int N,bit[maxn*2];
inline ll gcd(ll a,ll b) { return b?gcd(b,a%b):a; }
inline ll query(int l,int r)
{
int len = r-l+1;
return gcd(rmq[bit[len]][l],rmq[bit[len]][r-(1<<bit[len])+1]);
}
inline ll work()
{
ll ret = 0;
for (int i = 1;i <= N;++i)
{
ll now = rmq[0][i];
for (int last = i,l,r,mid;last;)
{
l = 1,r = last;
while (l <= r)
{
mid = (l + r) >> 1;
if (query(mid,i) != now) l = mid + 1;
else r = mid - 1;
}
ret = max(ret,(i-r)*now);
if (r) now = gcd(now,rmq[0][r]); last = r;
}
}
return ret;
}
int main()
{
freopen("4052.in","r",stdin);
freopen("4052.out","w",stdout);
for (int i = 1;(1<<i)<=200000;++i) for (int j = 1<<(i-1);j < (1<<i);++j) bit[j] = i-1;
int T; scanf("%d",&T);
while (T--)
{
scanf("%d",&N);
for (int i = 1;i <= N;++i) scanf("%lld",rmq[0]+i);
for (int i = 1;(1 << i) <= N;++i)
for (int j = 1;j+(1<<i)-1 <= N;++j) rmq[i][j] = gcd(rmq[i-1][j],rmq[i-1][j+(1<<(i-1))]);
printf("%lld\n",work());
}
fclose(stdin); fclose(stdout);
return 0;
}
BZOJ 4052 Magical GCD的更多相关文章
- 【BZOJ】【4052】【CERC2013】Magical GCD
DP/GCD 然而蒟蒻并不会做…… Orz @lct1999神犇 首先我们肯定是要枚举下端点的……嗯就枚举右端点吧…… 那么对于不同的GCD,对应的左端点最多有log(a[i])个:因为每次gcd缩小 ...
- 4052: [Cerc2013]Magical GCD
4052: [Cerc2013]Magical GCD Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 148 Solved: 70[Submit][ ...
- Magical GCD UVA 1642 利用约数个数少来优化 给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量的值最大。输出这个最大值。
/** 题目:Magical GCD UVA 1642 链接:https://vjudge.net/problem/UVA-1642 题意:给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量 ...
- 【BZOJ4052】[Cerc2013]Magical GCD 乱搞
[BZOJ4052][Cerc2013]Magical GCD Description 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12. 求一个连续子序列,使得在所有的连续 ...
- [BZOJ4052][Cerc2013]Magical GCD
[BZOJ4052][Cerc2013]Magical GCD 试题描述 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12. 求一个连续子序列,使得在所有的连续子序列中,它们 ...
- UVA - 1642 Magical GCD 数学
Magical GCD The Magical GCD of a nonempty sequence of positive integer ...
- 【NOIP2014模拟8.17】Magical GCD
题目 对于一个由正整数组成的序列, Magical GCD 是指一个区间的长度乘以该区间内所有数字的最大公约数.给你一个序列,求出这个序列最大的 Magical GCD. 分析 根据暴力的思想, \( ...
- BZOJ.4052.[Cerc2013]Magical GCD(思路)
BZOJ \(Description\) 给定\(n\)个数的序列\(a_i\).求所有连续子序列中,序列长度 × 该序列中所有数的gcd 的最大值. \(n\leq10^5,\ a_i\leq10^ ...
- BZOJ 4052: [Cerc2013]Magical GCD
以一个数字开头的子序列的gcd种类不会超过logn种,因此去找相同gcd最长的位置,更新一下答案,复杂度O(nlogn^2) #include<cstdio> #include<al ...
随机推荐
- Android开发_Android数据的四种存储方式
Android系统一共提供了四种数据存储方式.分别是:SharePreference.SQLite.Content Provider和File.由于Android系统中,数据基本都是私有的的,都是存放 ...
- Android开发学习之LauncherActivity开发启动的列表
Android开发学习之LauncherActivity开发启动的列表 创建项目:OtherActivity 项目运行结果: 建立主Activity:OtherActivity.java [jav ...
- NDK开发之JNIEnv参数详解
即使我们Java层的函数没有参数,原生方法还是自带了两个参数,其中第一个参数就是JNIEnv. 如下: native方法: public native String stringFromC(); pu ...
- Js 直接下载保存文件
//直接下载保存文件 function Download(filePath) { // 如果中间IFRAME不存在,则添加 if (!document.getElementById("_SA ...
- android下4G上网卡
架构: APP Call Trachker/SMS Dispatch/Service Tracker/Data Tracker ------------------------------------ ...
- 苹果手机 iframe 无法滚动bug
原来在html5下,iframe 只有 src 属性scroling='no' 解决办法:在iframe外加一层第div,设置样式-webkit-overflow-scrolling:touch;ov ...
- PHP一个最简单的CMS内容管理系统
博客是一般程序员的入手戏,写得好写不好,有没有兴趣,逻辑性够不够都从这个里面入手 我现在摒弃前台.重点讲解下如何开发一个简单的CMS系统所需要的步骤: 1.清楚流程 1--------登录后台 2-- ...
- hibernate和mybatis思想,区别,优缺点
Hibernate 简介 Hibernate对数据库结构提供了较为完整的封装,Hibernate的O/R Mapping实现了POJO 和数据库表之间的映射,以及SQL 的自动生成和执行.程序员往往只 ...
- [PDF] PDFOperation--C#PDF文件操作帮助类 (转载)
点击下载 PDFOperation.rar 这个类是关于PDFOperation的帮助类,主要是实现C#PDF的文件操作,具体实现功能如下1.构造函数2.私有字段3.设置字体4.设置页面大小5.实例化 ...
- sql - 查询所有表中包含指定值
可以直接创建sql语句: CREATE TABLE qResults (tName nvarchar(370), cname nvarchar(3630),[count] int) declare @ ...