BZOJ 4052 Magical GCD
Description
给出一个长度在\(100000\)以内的正整数序列,大小不超过\(10^{12}\)。求一个连续子序列,使得在所有的连续子序列中,它们的GCD值乘以它们的长度最大。
Input
第一行一个整数\(T\),表示数据组数。
对于每组数据第一行一个整数\(N\),表示序列长度。接下来一行有\(N\)个整数,表示序列中的每个元素。
Output
对于每组数据,输出序列中所有连续子段中最大的GCD乘长度。
Sample Input
1
5
30 60 20 20 20
Sample Output
80
HINT
\(N \le 100000\)
由于gcd每次变化至少减少一半,序列中本质不同的gcd子段只有\(O(nlogn)\)个。对于每个位置\(i\),我们枚举一个gcd值d,二分出一个最小的\(j\)使得\(gcd_{seq_{j \sim i}} = d\)。这个可以用ST表实现,复杂度\(O(nlog^{2}n) \times O(gcd)\)。
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long ll;
#define maxn (100010)
ll rmq[20][maxn]; int N,bit[maxn*2];
inline ll gcd(ll a,ll b) { return b?gcd(b,a%b):a; }
inline ll query(int l,int r)
{
int len = r-l+1;
return gcd(rmq[bit[len]][l],rmq[bit[len]][r-(1<<bit[len])+1]);
}
inline ll work()
{
ll ret = 0;
for (int i = 1;i <= N;++i)
{
ll now = rmq[0][i];
for (int last = i,l,r,mid;last;)
{
l = 1,r = last;
while (l <= r)
{
mid = (l + r) >> 1;
if (query(mid,i) != now) l = mid + 1;
else r = mid - 1;
}
ret = max(ret,(i-r)*now);
if (r) now = gcd(now,rmq[0][r]); last = r;
}
}
return ret;
}
int main()
{
freopen("4052.in","r",stdin);
freopen("4052.out","w",stdout);
for (int i = 1;(1<<i)<=200000;++i) for (int j = 1<<(i-1);j < (1<<i);++j) bit[j] = i-1;
int T; scanf("%d",&T);
while (T--)
{
scanf("%d",&N);
for (int i = 1;i <= N;++i) scanf("%lld",rmq[0]+i);
for (int i = 1;(1 << i) <= N;++i)
for (int j = 1;j+(1<<i)-1 <= N;++j) rmq[i][j] = gcd(rmq[i-1][j],rmq[i-1][j+(1<<(i-1))]);
printf("%lld\n",work());
}
fclose(stdin); fclose(stdout);
return 0;
}
BZOJ 4052 Magical GCD的更多相关文章
- 【BZOJ】【4052】【CERC2013】Magical GCD
DP/GCD 然而蒟蒻并不会做…… Orz @lct1999神犇 首先我们肯定是要枚举下端点的……嗯就枚举右端点吧…… 那么对于不同的GCD,对应的左端点最多有log(a[i])个:因为每次gcd缩小 ...
- 4052: [Cerc2013]Magical GCD
4052: [Cerc2013]Magical GCD Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 148 Solved: 70[Submit][ ...
- Magical GCD UVA 1642 利用约数个数少来优化 给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量的值最大。输出这个最大值。
/** 题目:Magical GCD UVA 1642 链接:https://vjudge.net/problem/UVA-1642 题意:给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量 ...
- 【BZOJ4052】[Cerc2013]Magical GCD 乱搞
[BZOJ4052][Cerc2013]Magical GCD Description 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12. 求一个连续子序列,使得在所有的连续 ...
- [BZOJ4052][Cerc2013]Magical GCD
[BZOJ4052][Cerc2013]Magical GCD 试题描述 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12. 求一个连续子序列,使得在所有的连续子序列中,它们 ...
- UVA - 1642 Magical GCD 数学
Magical GCD The Magical GCD of a nonempty sequence of positive integer ...
- 【NOIP2014模拟8.17】Magical GCD
题目 对于一个由正整数组成的序列, Magical GCD 是指一个区间的长度乘以该区间内所有数字的最大公约数.给你一个序列,求出这个序列最大的 Magical GCD. 分析 根据暴力的思想, \( ...
- BZOJ.4052.[Cerc2013]Magical GCD(思路)
BZOJ \(Description\) 给定\(n\)个数的序列\(a_i\).求所有连续子序列中,序列长度 × 该序列中所有数的gcd 的最大值. \(n\leq10^5,\ a_i\leq10^ ...
- BZOJ 4052: [Cerc2013]Magical GCD
以一个数字开头的子序列的gcd种类不会超过logn种,因此去找相同gcd最长的位置,更新一下答案,复杂度O(nlogn^2) #include<cstdio> #include<al ...
随机推荐
- [Redux] Filtering Redux State with React Router Params
We will learn how adding React Router shifts the balance of responsibilities, and how the components ...
- [Java Performance] 数据库性能最佳实践 - JPA和读写优化
数据库性能最佳实践 当应用须要连接数据库时.那么应用的性能就可能收到数据库性能的影响. 比方当数据库的I/O能力存在限制,或者因缺失了索引而导致运行的SQL语句须要对整张表进行遍历.对于这些问题.只相 ...
- MYSQL学习笔记2--mysql 静态和动态plugin
mysql源码编译 .cmke 安装 yum install cmake .依赖的库下载机安装: yum -y install gcc* gcc-c++* autoconf* automake* zl ...
- 聊聊 KVC 和 KVO 的高阶应用
KVC, KVO 作为一种魔法贯穿日常Cocoa开发,笔者原先是准备写一篇对其的全面总结,可网络上对其的表面介绍已经够多了,除去基本层面的使用,笔者跟大家谈下平常在网络上没有提及的KVC, KVO进阶 ...
- 使用Cache防止多人同时修改同一条信息
Default.aspx: <a href="Default2.aspx?id=123&type=11ad">打开第二个页面id=123</a>&l ...
- HTML之<!DOCTYPE> 标签介绍
实例: <!DOCTYPE html> <html> <head> <title>文档的标题</title> </head> & ...
- 前后端分离--构建前端Mock Server--windows部署rap
mock:模拟的,虚假的 mock server:模拟服务,模拟请求,模拟虚假数据 为了前后端更好的分工,接口文档是必须的,前后端都根据接口文档写代码,然后对接接口就行了. 但是,后端跟不上前端节奏, ...
- Java 文件下载
public HttpServletResponse download(String path, HttpServletResponse response) { try { // path是指欲下载的 ...
- [uiview animation ...] 这个函数有多少没有认识的可能!翻盘效果 上下左右怎么翻都不怕
1.自己还想着怎么3d 变形 让一个视图绕x/y 轴线翻转 就这么一句代码 [UIView transitionWithView:self.startButton duration:0.5 op ...
- ios开发中MVC模式的理解
MVC是80年代出现的一种软件设计模式,是模型(model),视图(view)和控制(Controller)的缩写. 其中Model的主要功能包括业务逻辑的处理以及数据的访问,这是应用程序的主体部分. ...