python之scrapy入门教程
看这篇文章的人,我假设你们都已经学会了python(派森),然后下面的知识都是python的扩展(框架)。
在这篇入门教程中,我们假定你已经安装了Scrapy。如果你还没有安装,那么请参考安装指南。
我们将使用开放目录项目(dmoz)作为抓取的例子。
这篇入门教程将引导你完成如下任务:
- 创建一个新的Scrapy项目
- 定义提取的Item
- 写一个Spider用来爬行站点,并提取Items
- 写一个Item Pipeline用来存储提取出的Items
Scrapy是由Python编写的。如果你是Python新手,你也许希望从了解Python开始,以期最好的使用Scrapy。如果你对其它编程语言熟悉,想快速的学习Python,这里推荐 Dive Into Python。如果你对编程是新手,且想从Python开始学习编程,请看下面的对非程序员的Python资源列表。
新建工程
在抓取之前,你需要新建一个Scrapy工程。进入一个你想用来保存代码的目录,然后执行:
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp. T:\>scrapy startproject tutorial
T:\>
这个命令会在当前目录下创建一个新目录tutorial,它的结构如下:
T:\tutorial>tree /f
Folder PATH listing
Volume serial number is 0006EFCF C86A:7C52
T:.
│ scrapy.cfg
│
└─tutorial
│ items.py
│ pipelines.py
│ settings.py
│ __init__.py
│
└─spiders
__init__.py
这些文件主要是:
- scrapy.cfg: 项目配置文件
- tutorial/: 项目python模块, 呆会代码将从这里导入
- tutorial/items.py: 项目items文件
- tutorial/pipelines.py: 项目管道文件
- tutorial/settings.py: 项目配置文件
- tutorial/spiders: 放置spider的目录
定义Item
Items是将要装载抓取的数据的容器,它工作方式像python里面的字典,但它提供更多的保护,比如对未定义的字段填充以防止拼写错误。
它通过创建一个scrapy.item.Item类来声明,定义它的属性为scrpy.item.Field对象,就像是一个对象关系映射(ORM).
我们通过将需要的item模型化,来控制从dmoz.org获得的站点数据,比如我们要获得站点的名字,url和网站描述,我们定义这三种属性的域。要做到这点,我们编辑在tutorial目录下的items.py文件,我们的Item类将会是这样
from scrapy.item import Item, Field
class DmozItem(Item):
title = Field()
link = Field()
desc = Field()
刚开始看起来可能会有些困惑,但是定义这些item能让你用其他Scrapy组件的时候知道你的 items到底是什么。
我们的第一个爬虫(Spider)
Spider是用户编写的类,用于从一个域(或域组)中抓取信息。
他们定义了用于下载的URL的初步列表,如何跟踪链接,以及如何来解析这些网页的内容用于提取items。
要建立一个Spider,你必须为scrapy.spider.BaseSpider创建一个子类,并确定三个主要的、强制的属性:
- name:爬虫的识别名,它必须是唯一的,在不同的爬虫中你必须定义不同的名字.
- start_urls:爬虫开始爬的一个URL列表。爬虫从这里开始抓取数据,所以,第一次下载的数据将会从这些URLS开始。其他子URL将会从这些起始URL中继承性生成。
- parse():爬虫的方法,调用时候传入从每一个URL传回的Response对象作为参数,response将会是parse方法的唯一的一个参数,
这个方法负责解析返回的数据、匹配抓取的数据(解析为item)并跟踪更多的URL。
这是我们的第一只爬虫的代码,将其命名为dmoz_spider.py并保存在tutorial\spiders目录下。
from scrapy.spider import BaseSpider class DmozSpider(BaseSpider):
name = "dmoz"
allowed_domains = ["dmoz.org"]
start_urls = [
"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
] def parse(self, response):
filename = response.url.split("/")[-2]
open(filename, 'wb').write(response.body)
爬爬爬
为了让我们的爬虫工作,我们返回项目主目录执行以下命令
T:\tutorial>scrapy crawl dmoz
crawl dmoz 命令从dmoz.org域启动爬虫。 你将会获得如下类似输出
T:\tutorial>scrapy crawl dmoz
2012-07-13 19:14:45+0800 [scrapy] INFO: Scrapy 0.14.4 started (bot: tutorial)
2012-07-13 19:14:45+0800 [scrapy] DEBUG: Enabled extensions: LogStats, TelnetConsole, CloseSpider, WebService, CoreStats, SpiderState
2012-07-13 19:14:45+0800 [scrapy] DEBUG: Enabled downloader middlewares: HttpAuthMiddleware, DownloadTimeoutMiddleware, UserAgentMiddleware, RetryMiddleware, DefaultHeadersMiddleware, RedirectMiddleware, CookiesMiddleware, HttpCompressionMiddleware, ChunkedTransferMiddleware, DownloaderStats
2012-07-13 19:14:45+0800 [scrapy] DEBUG: Enabled spider middlewares: HttpErrorMiddleware, OffsiteMiddleware, RefererMiddleware, UrlLengthMiddleware, DepthMiddleware
2012-07-13 19:14:45+0800 [scrapy] DEBUG: Enabled item pipelines:
2012-07-13 19:14:45+0800 [dmoz] INFO: Spider opened
2012-07-13 19:14:45+0800 [dmoz] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)
2012-07-13 19:14:45+0800 [scrapy] DEBUG: Telnet console listening on 0.0.0.0:6023
2012-07-13 19:14:45+0800 [scrapy] DEBUG: Web service listening on 0.0.0.0:6080
2012-07-13 19:14:46+0800 [dmoz] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> (referer: None)
2012-07-13 19:14:46+0800 [dmoz] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: None)
2012-07-13 19:14:46+0800 [dmoz] INFO: Closing spider (finished)
2012-07-13 19:14:46+0800 [dmoz] INFO: Dumping spider stats:
{'downloader/request_bytes': 486,
'downloader/request_count': 2,
'downloader/request_method_count/GET': 2,
'downloader/response_bytes': 13063,
'downloader/response_count': 2,
'downloader/response_status_count/200': 2,
'finish_reason': 'finished',
'finish_time': datetime.datetime(2012, 7, 13, 11, 14, 46, 703000),
'scheduler/memory_enqueued': 2,
'start_time': datetime.datetime(2012, 7, 13, 11, 14, 45, 500000)}
2012-07-13 19:14:46+0800 [dmoz] INFO: Spider closed (finished)
2012-07-13 19:14:46+0800 [scrapy] INFO: Dumping global stats:
{}
注意包含 [dmoz]的行 ,那对应着我们的爬虫。你可以看到start_urls中定义的每个URL都有日志行。因为这些URL是起始页面,所以他们没有引用(referrers),所以在每行的末尾你会看到 (referer: <None>).
有趣的是,在我们的 parse 方法的作用下,两个文件被创建:分别是 Books 和 Resources,这两个文件中有URL的页面内容。
发生了什么事情?
Scrapy为爬虫的 start_urls属性中的每个URL创建了一个 scrapy.http.Request 对象 ,并将爬虫的parse 方法指定为回调函数。
这些 Request首先被调度,然后被执行,之后通过parse()方法,scrapy.http.Response 对象被返回,结果也被反馈给爬虫。
提取Item
选择器介绍
我们有很多方法从网站中提取数据。Scrapy 使用一种叫做 XPath selectors的机制,它基于 XPath表达式。如果你想了解更多selectors和其他机制你可以查阅资料http://doc.scrapy.org/topics/selectors.html#topics-selectors
这是一些XPath表达式的例子和他们的含义
- /html/head/title: 选择HTML文档<head>元素下面的<title> 标签。
- /html/head/title/text(): 选择前面提到的<title> 元素下面的文本内容
- //td: 选择所有 <td> 元素
- //div[@class="mine"]: 选择所有包含 class="mine" 属性的div 标签元素
这只是几个使用XPath的简单例子,但是实际上XPath非常强大。如果你想了解更多XPATH的内容,我们向你推荐这个XPath教程http://www.w3schools.com/XPath/default.asp
为了方便使用XPaths,Scrapy提供XPathSelector 类, 有两种口味可以选择, HtmlXPathSelector (HTML数据解析) 和XmlXPathSelector (XML数据解析)。 为了使用他们你必须通过一个 Response 对象对他们进行实例化操作。你会发现Selector对象展示了文档的节点结构。因此,第一个实例化的selector必与根节点或者是整个目录有关 。
Selectors 有三种方法
- path():返回selectors列表, 每一个select表示一个xpath参数表达式选择的节点.
- extract():返回一个unicode字符串,该字符串为XPath选择器返回的数据
- re(): 返回unicode字符串列表,字符串作为参数由正则表达式提取出来
尝试在shell中使用Selectors
为了演示Selectors的用法,我们将用到 内建的Scrapy shell,这需要系统已经安装IPython (一个扩展python交互环境) 。
附IPython下载地址:http://pypi.python.org/pypi/ipython#downloads
要开始shell,首先进入项目顶层目录,然后输入
T:\tutorial>scrapy shell http://www.dmoz.org/Computers/Programming/Languages/Python/Books/
输出结果类似这样:
2012-07-16 10:58:13+0800 [scrapy] INFO: Scrapy 0.14.4 started (bot: tutorial)
2012-07-16 10:58:13+0800 [scrapy] DEBUG: Enabled extensions: TelnetConsole, CloseSpider, WebService, CoreStats, SpiderState
2012-07-16 10:58:13+0800 [scrapy] DEBUG: Enabled downloader middlewares: HttpAuthMiddleware, DownloadTimeoutMiddleware, UserAgentMiddleware, RetryMiddleware, DefaultHeadersMiddleware, RedirectMiddleware, CookiesMiddleware, HttpCompressionMiddleware, ChunkedTransferMiddleware, DownloaderStats
2012-07-16 10:58:13+0800 [scrapy] DEBUG: Enabled spider middlewares: HttpErrorMiddleware, OffsiteMiddleware, RefererMiddleware, UrlLengthMiddleware, DepthMiddleware
2012-07-16 10:58:13+0800 [scrapy] DEBUG: Enabled item pipelines:
2012-07-16 10:58:13+0800 [scrapy] DEBUG: Telnet console listening on 0.0.0.0:6023
2012-07-16 10:58:13+0800 [scrapy] DEBUG: Web service listening on 0.0.0.0:6080
2012-07-16 10:58:13+0800 [dmoz] INFO: Spider opened
2012-07-16 10:58:18+0800 [dmoz] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: None)
[s] Available Scrapy objects:
[s] hxs <HtmlXPathSelector xpath=None data=u'<html><head><meta http-equiv="Content-Ty'>
[s] item {}
[s] request <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s] response <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s] settings <CrawlerSettings module=<module 'tutorial.settings' from 'T:\tutorial\tutorial\settings.pyc'>>
[s] spider <DmozSpider 'dmoz' at 0x1f68230>
[s] Useful shortcuts:
[s] shelp() Shell help (print this help)
[s] fetch(req_or_url) Fetch request (or URL) and update local objects
[s] view(response) View response in a browser
WARNING: Readline services not available or not loaded.WARNING: Proper color support under MS Windows requires the pyreadline library.
You can find it at:
http://ipython.org/pyreadline.html
Gary's readline needs the ctypes module, from:
http://starship.python.net/crew/theller/ctypes
(Note that ctypes is already part of Python versions 2.5 and newer). Defaulting color scheme to 'NoColor'Python 2.7.3 (default, Apr 10 2012, 23:31:26) [MSC v.1500 32 bit (Intel)]
Type "copyright", "credits" or "license" for more information. IPython 0.13 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details. In [1]:
Shell载入后,你将获得回应,这些内容被存储在本地变量 response 中,所以如果你输入response.body 你将会看到response的body部分,或者输入response.headers 来查看它的 header部分。
Shell也实例化了两种selectors,一个是解析HTML的 hxs 变量,一个是解析 XML 的 xxs 变量。我们来看看里面有什么:
In [1]: hxs.path('//title')
Out[1]: [<HtmlXPathSelector xpath='//title' data=u'<title>Open Directory - Computers: Progr'>] In [2]: hxs.path('//title').extract()
Out[2]: [u'<title>Open Directory - Computers: Programming: Languages: Python: Books</title>'] In [3]: hxs.path('//title/text()')
Out[3]: [<HtmlXPathSelector xpath='//title/text()' data=u'Open Directory - Computers: Programming:'>] In [4]: hxs.path('//title/text()').extract()
Out[4]: [u'Open Directory - Computers: Programming: Languages: Python: Books'] In [5]: hxs.path('//title/text()').re('(\w+):')
Out[5]: [u'Computers', u'Programming', u'Languages', u'Python'] In [6]:
提取数据
现在我们尝试从网页中提取数据。
你可以在控制台输入 response.body, 检查源代码中的 XPaths 是否与预期相同。然而,检查HTML源代码是件很枯燥的事情。为了使事情变得简单,我们使用Firefox的扩展插件Firebug。更多信息请查看Using Firebug for scraping 和Using Firefox for scraping.
txw1958注:事实上我用的是Google Chrome的Inspect Element功能,而且可以提取元素的XPath。
检查源代码后,你会发现我们需要的数据在一个 <ul>元素中,而且是第二个<ul>。
我们可以通过如下命令选择每个在网站中的 <li> 元素:
hxs.path('//ul/li')
然后是网站描述:
hxs.path('//ul/li/text()').extract()
网站标题:
hxs.path('//ul/li/a/text()').extract()
网站链接:
hxs.path('//ul/li/a/@href').extract()
如前所述,每个path()调用返回一个selectors列表,所以我们可以结合path()去挖掘更深的节点。我们将会用到这些特性,所以:
sites = hxs.path('//ul/li')
for site in sites:
title = site.path('a/text()').extract()
link = site.path('a/@href').extract()
desc = site.path('text()').extract()
print title, link, desc
Note
更多关于嵌套选择器的内容,请阅读Nesting selectors 和 Working with relative XPaths
将代码添加到爬虫中:
txw1958注:代码有修改,绿色注释掉的代码为原教程的,你懂的
from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector class DmozSpider(BaseSpider):
name = "dmoz"
allowed_domains = ["dmoz.org"]
start_urls = [
"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
] def parse(self, response):
hxs = HtmlXPathSelector(response)
sites = hxs.path('//fieldset/ul/li')
#sites = hxs.path('//ul/li')
for site in sites:
title = site.path('a/text()').extract()
link = site.path('a/@href').extract()
desc = site.path('text()').extract()
#print title, link, desc
print title, link
现在我们再次抓取dmoz.org,你将看到站点在输出中被打印 ,运行命令
T:\tutorial>scrapy crawl dmoz
使用条目(Item)
Item 对象是自定义的python字典,使用标准字典类似的语法,你可以获取某个字段(即之前定义的类的属性)的值:
>>> item = DmozItem()
>>> item['title'] = 'Example title'
>>> item['title']
'Example title'
Spiders希望将其抓取的数据存放到Item对象中。为了返回我们抓取数据,spider的最终代码应当是这样:
from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector from tutorial.items import DmozItem class DmozSpider(BaseSpider):
name = "dmoz"
allowed_domains = ["dmoz.org"]
start_urls = [
"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
] def parse(self, response):
hxs = HtmlXPathSelector(response)
sites = hxs.path('//fieldset/ul/li')
#sites = hxs.path('//ul/li')
items = []
for site in sites:
item = DmozItem()
item['title'] = site.path('a/text()').extract()
item['link'] = site.path('a/@href').extract()
item['desc'] = site.path('text()').extract()
items.append(item)
return items
现在我们再次抓取 :
2012-07-16 14:52:36+0800 [dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
{'desc': [u'\n\t\t\t\n\t',
u' \n\t\t\t\n\t\t\t\t\t\n - Free Python books and tutorials.\n \n'],
'link': [u'http://www.techbooksforfree.com/perlpython.shtml'],
'title': [u'Free Python books']}
2012-07-16 14:52:36+0800 [dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
{'desc': [u'\n\t\t\t\n\t',
u' \n\t\t\t\n\t\t\t\t\t\n - Annotated list of free online books on Python scripting language. Topics range from beginner to advanced.\n \n
'],
'link': [u'http://www.freetechbooks.com/python-f6.html'],
'title': [u'FreeTechBooks: Python Scripting Language']}
2012-07-16 14:52:36+0800 [dmoz] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> (referer: None)
2012-07-16 14:52:36+0800 [dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/>
{'desc': [u'\n\t\t\t\n\t',
u' \n\t\t\t\n\t\t\t\t\t\n - A directory of free Python and Zope hosting providers, with reviews and ratings.\n \n'],
'link': [u'http://www.oinko.net/freepython/'],
'title': [u'Free Python and Zope Hosting Directory']}
2012-07-16 14:52:36+0800 [dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/>
{'desc': [u'\n\t\t\t\n\t',
u' \n\t\t\t\n\t\t\t\t\t\n - Features Python books, resources, news and articles.\n \n'],
'link': [u'http://oreilly.com/python/'],
'title': [u"O'Reilly Python Center"]}
2012-07-16 14:52:36+0800 [dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/>
{'desc': [u'\n\t\t\t\n\t',
u' \n\t\t\t\n\t\t\t\t\t\n - Resources for reporting bugs, accessing the Python source tree with CVS and taking part in the development of Python.\n\n'],
'link': [u'http://www.python.org/dev/'],
'title': [u"Python Developer's Guide"]}
保存抓取的数据
保存信息的最简单的方法是通过Feed exports,命令如下:
T:\tutorial>scrapy crawl dmoz -o items.json -t json
所有抓取的items将以JSON格式被保存在新生成的items.json 文件中
在像本教程一样的小型项目中,这些已经足够。然而,如果你想用抓取的items做更复杂的事情,你可以写一个 Item Pipeline(条目管道)。因为在项目创建的时候,一个专门用于条目管道的占位符文件已经随着items一起被建立,目录在tutorial/pipelines.py。如果你只需要存取这些抓取后的items的话,就不需要去实现任何的条目管道。
结束语
本教程简要介绍了Scrapy的使用,但是许多其他特性并没有提及。
对于基本概念的了解,请访问Basic concepts
我们推荐你继续学习Scrapy项目的例子dirbot,你将从中受益更深,该项目包含本教程中提到的dmoz爬虫。
Dirbot项目位于https://github.com/scrapy/dirbot
项目包含一个README文件,它详细描述了项目的内容。
如果你熟悉git,你可以checkout它的源代码。或者你可以通过点击Downloads下载tarball或zip格式的文件。
另外这有一个代码片断共享网站,里面共享内容包括爬虫,中间件,扩展应用,脚本等。网站名字叫Scrapy snippets,有好的代码要记得共享哦:-)
文件源码附件稍后上传……
python之scrapy入门教程的更多相关文章
- 2019-03-22 Python Scrapy 入门教程 笔记
Python Scrapy 入门教程 入门教程笔记: # 创建mySpider scrapy startproject mySpider # 创建itcast.py cd C:\Users\theDa ...
- [转]Scrapy入门教程
关键字:scrapy 入门教程 爬虫 Spider 作者:http://www.cnblogs.com/txw1958/ 出处:http://www.cnblogs.com/txw1958/archi ...
- Scrapy入门教程
关键字:scrapy 入门教程 爬虫 Spider作者:http://www.cnblogs.com/txw1958/出处:http://www.cnblogs.com/txw1958/archive ...
- Scrapy入门教程(转)
关键字:scrapy 入门教程 爬虫 Spider作者:http://www.cnblogs.com/txw1958/出处:http://www.cnblogs.com/txw1958/archive ...
- Python开发的入门教程(一)-数据类型、变量
介绍 Python第一门课程,是Python开发的入门教程,将介绍Python语言的特点和适用范围,Python基本的数据类型,条件判断和循环,函数,以及Python特有的切片和列表生成式. Pyth ...
- Python运算符 - Python零基础入门教程
目录 一.算术运算符 二.赋值运算符 三.比较运算符 四.运算符的优先等级 五.重点总结 六.猜你喜欢 零基础 Python 学习路线推荐 : Python 学习目录 >> Python ...
- Python break/continue - Python零基础入门教程
目录 一.break 二.continue 三.重点总结 四.猜你喜欢 零基础 Python 学习路线推荐 : Python 学习目录 >> Python 基础入门 在 Python wh ...
- Python for循环 - Python零基础入门教程
目录 一.for 循环语法 二.for 循环实战 三.重点总结 四.猜你喜欢 零基础 Python 学习路线推荐 : Python 学习目录 >> Python 基础入门 在 Python ...
- 「Python」pandas入门教程
pandas适合于许多不同类型的数据,包括: 具有异构类型列的表格数据,例如SQL表格或Excel数据 有序和无序(不一定是固定频率)时间序列数据. 具有行列标签的任意矩阵数据(均匀类型或不同类型) ...
随机推荐
- Minimum Depth of Binary Tree ——LeetCode
Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the shor ...
- Sublime 2 Installation for Linux
Linux You can download the package and uncompress it manually. Alternatively, you can use the comman ...
- HDU_1430——魔板,预处理,康托展开,置换,string类的+操作
Problem Description 在魔方风靡全球之后不久,Rubik先生发明了它的简化版——魔板.魔板由8个同样大小的方块组成,每个方块颜色均不相同,可用数字1-8分别表示.任一时刻魔板的状态可 ...
- Java图像灰度化的实现过程解析
概要 本文主要介绍了灰度化的几种方法,以及如何使用Java实现灰度化.同时分析了网上一种常见却并不妥当的Java灰度化实现,以及证明了opencv的灰度化是使用“加权灰度化”法 24位彩色图与8位灰度 ...
- jsp servelet
servlet是java web应用程序. 1.生命周期:init() .service().destroy()方法. 其中service()包括 doGet() .doPost()方法.默认为get ...
- EMV/PBOC 解析(一) 卡片文件结构
刚到公司老大便发我一份文档<智能卡ISO7816-4规范(中文版)>,然后就让我研究下IC智能卡数据读取和支付.身为一直做.NET开发的我对硬件啥的一无所知,各种无头绪啊,研究了两天后,稍 ...
- C++库研究笔记——Linux下是否需要使用memory pool?
Linux Slab分配器(一)--概述 Linux slab 分配器剖析 C++库研究笔记——内存池实现 做了一些测试:发现linux使用内存池与否没有明显差别,仅仅有2倍. Linux内存处理机制 ...
- Swift学习笔记 - 函数与闭包
import Foundation //1.函数的定义与调用//以 func 作为前缀,返回箭头 -> 表示函数的返回类型func sayHello(name: String) -> St ...
- [转] The Single Biggest Obstacle to Trading Success
Why do some people succeed spectacularly in the market while others fail? The market is the same for ...
- STL之Errors and Exceptions
Error Handling STL设计的目标是性能最优化,而不是最安全. 错误检查是极其浪费时间的,因此,STL对于错误处理几乎没有做处理,因此,这对STL的使用者的要求就非常高. 为什么不采取错误 ...