【转】RDO、SAD、SATD、λ
SAD(Sum of Absolute Difference)=SAE(Sum of Absolute Error)即绝对误差和
SATD(Sum of Absolute Transformed Difference)即hadamard变换后再绝对值求和
MAD(Mean Absolute Difference)=MAE(Mean Absolute Error)即平均绝对差值
SSD(Sum of Squared Difference)=SSE(Sum of Squared Error)即差值的平方和
MSD(Mean Squared Difference)=MSE(Mean Squared Error)即平均平方误差
经常有人问我这方面的问题,今天总结归纳一下。
众所周知,评价编码效率的有两大指标:码率和PSNR。码流越小,则压缩率越大;PSNR越大,重建图像越好。在模式选择的时候,判别公式实质上也就是对二者的综合评价。
首先以RDO为例,模式对应的代价:J(mode)=SSD+λ*R(ref,mode,mv,residual)
这里,SSD是指重建块与源图像的差值均方和;λ是拉格朗日乘子,就当是权值吧^_^;R就是该模式下宏块编码的实际码流,包括对参考帧、模式、运动矢量、残差等的比特总和。当然如果是帧内模式,就只有R(mode,residual)。
很多人迷惑的是,改宏块还没编码啊,怎么知道它的码流和重建图像?实际上,RDO就是对每个模式都实际编码一次,得到J(mode),然后选择J(mode)最小的模式为实际编码模式。就像编码器引入了一个大反馈,这也正是JM选用RDO编码起来龟速的原因,当然,编码效率最佳。
后来,“随意”注意到,不论熵编码选用cavlc还是cabac,各个模式下的residual编码都使用cavlc,这就是说选用cabac,模式选择时得到的R不是实际的R,为什么此时不用cabac呢?难道cabac复杂么?我的看法是因为cabac会对模型表更新数据。解码端是没有模式选择模块的,如果编码端此时使用cabac,会造成编解码端模型表不匹配,不能正常解码。
λ的取值是根据实验得到的。使用B帧与使用B帧的λ值是不一样的。具体值忘了,^_^,看相关文章。
前已所述,RDO包含各模式的实际编码过程,也就是变换量化、熵编码、反变换反量化、重建等,计算量是相当大的,实时编码领域不可能直接使用。因此,就有了下面的替代公式:
J(mode)=SAD+λ*R(ref,mode,mv)
J(mode)=SATD+λ*R(ref,mode,mv)
这里SAD就是该模式下预测块与源图像的绝对误差和。比特R中少了对residual的编码,也就是运动估计后就可以直接得到该模式的J(mode)值,极大的减少了运算复杂度。SATD就是对残差进行哈德曼变换后的系数绝对和,在大多数情形下,SATD比SAD评价效果更好些,我对foreman CIF图像的测试,psnr增加了约0.2db,码流差不多。当然,SATD比SAD多了个变换,计算量大些。
注意,此时的λ与RDO的λ取值是不一样的。
容易困惑的还有,运动估计的匹配准则,很多运动估计的论文中都直接是SAD或SSE。编码器中对残差、MV、ref都要编码,所以匹配准则也就是SAD和码流R的综合评价!!!在同一个模式下,参考块与编码块的不同信息有ref、MV,故匹配准则为:
Jmotion=SAD+λ*R(ref,mv)
最后,附上我以前在群“H264乐园”中的帖子,
Q:如果不用率失真最优化, 为什么选择SATD+delta×r(mode,ref,mv)作为模式选择的依据?为什么运动估计中,整象素搜索用SAD,而亚象素用SATD?为什么帧内模式选择要用SATD?
A:
SAD即绝对误差和,仅反映残差时域差异,影响PSNR值,不能有效反映码流的大小。SATD即将残差经哈德曼变换的4×4块的预测残差绝对值总和,可以将其看作简单的时频变换,其值在一定程度上可以反映生成码流的大小。因此,不用率失真最优化时,可将其作为模式选择的依据。
一般帧内要对所有的模式进行检测,帧内预测选用SATD的原因同上。
在做运动估计时,一般而言,离最优匹配点越远,匹配误差值SAD越大,这就是有名的单一平面假设,现有的运动估计快速算法大都利用该特性。但是,转换后SATD值并不满足该条件,如果在整象素中运用SATD搜索,容易陷入局部最优点。而在亚象素中,待搜索点不多,各点处的SAD差异相对不大,可以用SATD选择码流较少的匹配位置。
补充:
在JM中,模式选择的时候,还可以加入信道传输错误的代价因子。信道传输错误是用N(比如30)个独立的解码回路模拟实现的,计算量更复杂。见下面的配置文件设置:
RDOptimization = 2 # rd-optimized mode decision (0:off, 1:on, 2: with losses)
NumberOfDecoders = 30 # Numbers of decoders used to simulate the channel, only valid if RDOptimization = 2
【转】RDO、SAD、SATD、λ的更多相关文章
- x264源代码简单分析:宏块分析(Analysis)部分-帧内宏块(Intra)
===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...
- x264源代码简单分析:编码器主干部分-2
===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...
- RDO、SAD、SATD、λ相关概念【转】
率失真优化概述: 率失真优化(Rate D isto r t i on Op t i m ized)策略是在率失真理论[3 ]的基础上提出的一种代价函数方案, RDO 的主要思想是, 在计算代价函数时 ...
- 【图像配准】基于灰度的模板匹配算法(一):MAD、SAD、SSD、MSD、NCC、SSDA、SATD算法
简介: 本文主要介绍几种基于灰度的图像匹配算法:平均绝对差算法(MAD).绝对误差和算法(SAD).误差平方和算法(SSD).平均误差平方和算法(MSD).归一化积相关算法(NCC).序贯相似性检测算 ...
- 什么是SAD,SAE,SATD,SSD,SSE,MAD,MAE,MSD,MSE?
SAD(Sum of Absolute Difference)=SAE(Sum of Absolute Error)即绝对误差和 SATD(Sum of Absolute Transformed Di ...
- RDO与RLO
RDO: 平均误差(SSD/SSE).均方误差(MSE).绝对误差和(SAD).峰值信噪比(PSNR) min D subject to R < Rc 拉格朗日优化(λ为拉格朗日乘子): min ...
- CentOS RDO方式快速安装OpenStack
一.了解RDO RDO是什么? RDO是红帽Red Hat Enterprise Linux OpenStack Platform的社区版,类似RHEL和Fedora,RHEV和oVirt这样的关系. ...
- Don't make a promise when you are in Joy. Don't reply when you are Sad.Don't take decisions when you are Angry.Think Twice.Act Wise.
Don't make a promise when you are in Joy. Don't reply when you are Sad.Don't take decisions when you ...
- SAD算法在opencv上的实现代码(c++)
#include <opencv2/opencv.hpp>#include <opencv2/core/core.hpp>#include <opencv2/highgu ...
随机推荐
- OpenDialog获取文件名
//OpenDialog获取文件 procedure TForm2.Button1Click(Sender: TObject); begin File_Path:=''; if OpenDialog1 ...
- Bios里,把SATA Mode Selection改为AHCI无法启动
新装系统Win7_X64,将SATA Mode Selection改为AHCI后总是重启,baidu参考: SATA的硬盘就选AHCI(全称应该是SATA AHCI),AHCI可以提升硬盘的读写速度原 ...
- mysql(转)
/* 启动MySQL */net start mysql /* 连接与断开服务器 */mysql -h 地址 -P 端口 -u 用户名 -p 密码 /* 跳过权限验证登录MySQL */mysqld ...
- Java学习-Overload和Override的区别
1.Overload是重载的意思,Override是覆盖的意思,也就是重写. 2.重载Overload表示同一个类中可以有多个名称相同的方法,但这些方法的参数列表各不相同(即参数个数或类型不同). 3 ...
- Ubuntu启动停止在checking battery state...
Ubuntu在“checking battery state...”处停止了,出现这种现象的原因可能有很多种.笔者遇到的是其中的一种. 情景描述: 笔者此前将Ubuntu的图形启动方式修改为了字符界面 ...
- collectionView布局原理及瀑布流布局方式--备用
最近学习到了瀑布流的实现方法,瀑布流的实现方式有多种,这里应用collectionView来重写其UICollectionViewLayout进行布局是最为简单方便的.但再用其布局之前必须了解其布局原 ...
- pscp实现Windows 和Linux 文件互相传输
pscp 能够实现Windows 和Linux 间相互传输文件.下文将详细描述如何使用: 一.pscp 简要描述: PSCP (PuTTY Secure Copy client)是PuTTY 提供的文 ...
- List中toArray()的使用方法
当我们需要把一个链表中的元素放入数组时,jdk给我们提供了一种方法,也即运用toArray(),方法的使用如下: public class Test { public static void main ...
- HDU 1171 Big Event in HDU(DP)
点我看题目 题意 : 给你一个n,然后n组数据,每组两个数字,一个是物品的价值,另外一个是物品的数量,让你尽量将这些东西分成价值相等的两份,如果无法相等就前一份要大于后一份. 思路 :这个题可以转化成 ...
- POJ 1404 I-Keyboard (DP)
http://poj.org/problem?id=1404 题意 :手机上的要发短信的话,“我”字需要先按一下9键,再按3下6键,所以,现在想要重新布局每个键上的字母数,让最后的那个值最小,也就是说 ...