Comparing randomized search and grid search for hyperparameter estimation
Comparing randomized search and grid search for hyperparameter estimation
Compare randomized search and grid search for optimizing hyperparameters of a random forest. All parameters that influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality tradeoff).
The randomized search and the grid search explore exactly the same space of parameters. The result in parameter settings is quite similar, while the run time for randomized search is drastically lower.
The performance is slightly worse for the randomized search, though this is most likely a noise effect and would not carry over to a held-out test set.
Note that in practice, one would not search over this many different parameters simultaneously using grid search, but pick only the ones deemed most important.
Python source code: randomized_search.py
print(__doc__) import numpy as np from time import time
from operator import itemgetter
from scipy.stats import randint as sp_randint from sklearn.grid_search import GridSearchCV, RandomizedSearchCV
from sklearn.datasets import load_digits
from sklearn.ensemble import RandomForestClassifier # get some data
iris = load_digits()
X, y = iris.data, iris.target # build a classifier
clf = RandomForestClassifier(n_estimators=20) # Utility function to report best scores
def report(grid_scores, n_top=3):
top_scores = sorted(grid_scores, key=itemgetter(1), reverse=True)[:n_top]
for i, score in enumerate(top_scores):
print("Model with rank: {0}".format(i + 1))
print("Mean validation score: {0:.3f} (std: {1:.3f})".format(
score.mean_validation_score,
np.std(score.cv_validation_scores)))
print("Parameters: {0}".format(score.parameters))
print("") # specify parameters and distributions to sample from
param_dist = {"max_depth": [3, None],
"max_features": sp_randint(1, 11),
"min_samples_split": sp_randint(1, 11),
"min_samples_leaf": sp_randint(1, 11),
"bootstrap": [True, False],
"criterion": ["gini", "entropy"]} # run randomized search
n_iter_search = 20
random_search = RandomizedSearchCV(clf, param_distributions=param_dist,
n_iter=n_iter_search) start = time()
random_search.fit(X, y)
print("RandomizedSearchCV took %.2f seconds for %d candidates"
" parameter settings." % ((time() - start), n_iter_search))
report(random_search.grid_scores_) # use a full grid over all parameters
param_grid = {"max_depth": [3, None],
"max_features": [1, 3, 10],
"min_samples_split": [1, 3, 10],
"min_samples_leaf": [1, 3, 10],
"bootstrap": [True, False],
"criterion": ["gini", "entropy"]} # run grid search
grid_search = GridSearchCV(clf, param_grid=param_grid)
start = time()
grid_search.fit(X, y) print("GridSearchCV took %.2f seconds for %d candidate parameter settings."
% (time() - start, len(grid_search.grid_scores_)))
report(grid_search.grid_scores_)
Comparing randomized search and grid search for hyperparameter estimation的更多相关文章
- 3.2. Grid Search: Searching for estimator parameters
3.2. Grid Search: Searching for estimator parameters Parameters that are not directly learnt within ...
- scikit-learn:3.2. Grid Search: Searching for estimator parameters
參考:http://scikit-learn.org/stable/modules/grid_search.html GridSearchCV通过(蛮力)搜索參数空间(參数的全部可能组合).寻找最好的 ...
- Grid search in the tidyverse
@drsimonj here to share a tidyverse method of grid search for optimizing a model's hyperparameters. ...
- How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras
Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are n ...
- Grid Search学习
转自:https://www.cnblogs.com/ysugyl/p/8711205.html Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性 ...
- grid search 超参数寻优
http://scikit-learn.org/stable/modules/grid_search.html 1. 超参数寻优方法 gridsearchCV 和 RandomizedSearchC ...
- [转载]Grid Search
[转载]Grid Search 初学机器学习,之前的模型都是手动调参的,效果一般.同学和我说他用了一个叫grid search的方法.可以实现自动调参,顿时感觉非常高级.吃饭的时候想调参的话最差不过也 ...
- 【起航计划 032】2015 起航计划 Android APIDemo的魔鬼步伐 31 App->Search->Invoke Search 搜索功能 Search Dialog SearchView SearchRecentSuggestions
Search (搜索)是Android平台的一个核心功能之一,用户可以在手机搜索在线的或是本地的信息.Android平台为所有需要提供搜索或是查询功能的应用提 供了一个统一的Search Framew ...
- grid search
sklearn.metrics.make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=F ...
随机推荐
- [转] Express 4 中的变化
http://www.cnblogs.com/haogj/p/3985438.html 概览 从 Express 3 到Express 4 是一个巨大的变化,这意味着现存的 Express 3 应用在 ...
- Servlet 过滤器
一.过滤器介绍 在Servlet 2.3中定义了过滤器,它能够对Servlet容器的请求和响应进行检查和修改. Servlet过滤器能够在Servlet被调用之前检查Request对象,并修改Requ ...
- easyui总结
1.设置一个区域可拖动的第一种方法直接用html<div id="dd" style="width:100px;height:100px;">< ...
- Oracle中wm_concat()的使用方法
以下两种方式使用wm_concat()的使用方法是等效的. 方法一:使用窗口函数,wm_concat支持窗口函数 select distinct classKey,className, classOr ...
- 巧用hidden传递参数
- CSS美化 input type=file 兼容各个浏览器(转)
HTML代码: <FORM> <A class=btn_addPic href="javascript:void(0);"><SPAN>< ...
- reactjs 入门
地址搜集:http://www.cocoachina.com/webapp/20150604/12035.html class 属性需要写成 className ,for 属性需要写成 htmlFor ...
- SQL存储过程传入字段名查询.
根据字段名和对应的值查询. (正确代码):目前发现,需要"分组,排序"等才能解决,如"order by","group by"等. SQL代 ...
- 利用ASP.NET AJAX的Timer讓GridView每隔一段時間做到自動換頁的功能
最近在討論區看到這個問題,小弟利用asp.net ajax的timer來實作這個功能 利用timer每隔一段時間,讓gridview自動跳頁並且更新gridview的內容 asp.net(c#) Gr ...
- PL/SQL Developer简单使用
表在以下: