《Mathematical Olympiad——数论》——整除
数论这个东西吧,虽说也是高中IMOer玩的数学游戏,颇具美学性的证明比较多。就目前所知,它在算法里是一些加密技术的基础,不多言,开始具体题目的分析。
问题一:已知数列{an},且a0 = 2 , a1 = 1 , a(n+1) = an + a(n-1),证明:若p为a(2k) - 2的素因子,则p也为a(2k+1) - 1的素因子。
分析:通过已知条件,有p | (a(2k) - 2) , 联系其递推式,则有p | {[a(2k+1)-1] - [a(2k-1)+1]}。接下来的部分解释考验数学观察力的时候了,通过计算an各项,我们会归纳出递推式的另外形式——a(2k-1)a(ak+1) = a(2k)^2 - 5。
∴[a(2k+1)-1] * [a(2k-1)+1] = a(2k)^2 - 6 + a(2k+1) - a(2k-1)
=a(2k)^2 +a(2k) - 6
= [a(2k) - 2][a(2k)+3]
∵p | (a(2k) - 2)
∴p | [a(2k+1)-1] * [a(2k-1)+1]
又∵p | {[a(2k+1)-1] - [a(2k-1)+1]}
∴p | a(2k+1)-1 且 p | a(2k-1)+1
证毕。
《Mathematical Olympiad——数论》——整除的更多相关文章
- 《Mathematical Olympiad——组合数学》——染色问题
恢复 继续关于<Mathematical Olympiad——组合数学>中问题的分析,这一篇文章将介绍有关染色的问题. 问题一: 将一些石头放入10行14列的矩形方格表内,允许在每个单元 ...
- 数学--数论--整除分块(巨TM详细,学不会,你来打我)
1.概念 从一道例题说起 在介绍整除分块之前,我们先来看一道算数题:已知正整数n,求∑i=1n⌊ni⌋已知正整数n,求∑i=1n⌊ni⌋在介绍整除分块之前,我们先来看一道算数题: 已知正整数n,求∑i ...
- 《Mathematical Olympiad——组合数学》——操作和游戏
这篇文章,我们开始对奥数中有关操作和游戏的问题进行分析和讨论,其实在信息学竞赛中涉及到的一些博弈问题(分析必胜策略)的问题(例如巴什博弈.尼姆博弈),本质上来讲,就是组合数学当中的组合游戏,并不是真正 ...
- 《Mathematical Olympiad——组合数学》——抽屉原理
抽屉原理可以说是组合数学中最简单易懂的一个原理了,其最简单最原始的一个表达形式:对于n本书放到n-1个抽屉中,保证每个抽屉都要有书,则必存在一个抽屉中有2本书.但是这个简单的原理在很多问题中都能够巧妙 ...
- 数论整除——cf1059D
用map是卡着过去的..题解用vector+离散化后常数小了十倍.. 总之就是把所有模数给保存下来然后离散化,再去匹配一下即可,最后有个细节 自己的 #include<bits/stdc++.h ...
- 经典书Discrete.Mathematics上的大神
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...
- INEQUALITY BOOKS
来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...
- 网络找的 关于 “中吹” Janus Dongye
看了这篇文章,感觉错过了一个精彩的人生. Janus Dongye, Coding Peasant at Universityof Cambridge (2012-present)(剑桥码农,2012 ...
- 简单数论之整除&质因数分解&唯一分解定理
[整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a ...
随机推荐
- Registry 类
提供表示 Windows 注册表中的根项的 RegistryKey 对象,并提供访问项/值对的 static 方法. 继承层次结构 System.Object Microsoft.Win32.Re ...
- 2017JAVA必读书籍
1.深入理解Java虚拟机:JVM高级特性与最佳实践 2.Oracle查询优化改写技巧与案例 3.Effective Java 4.Spring3.x企业应用开发实战 5.Spring技术内幕:深入解 ...
- 表单提交对chrome记住密码的影响
在处理注册.登录等含有用户名,密码的元素的表单时,chrome会主动的提示记住密码,然而这个功能在用户名的选择上真是耐人寻味,它总是寻找离password input控件最近的那一个文本框的内容,作为 ...
- Spring 创建bean的时机
默认在启动spring容器的时候,spring容器配置文件中的类就已经创建完成对象了 在<bean>中添加属性lazy-init,默认值为false. true 在c ...
- imod报错:error while loading shared libraries: libjpeg.so.62的解决办法
the file libjpeg.so.62(in /usr/lib/libjpeg.so.62)belongs to the package libjpeg62so try to reinstall ...
- SVN版本控制图标不显示的解决方法~
新系统每次装了svn之后,过了一段时间,安装的软件一多就会出现这个问题,哎,收录一下解决方案! 输入:win+R,输入regedit,调出注册表信息,按下Ctrl+F,在注册表里搜索"She ...
- 如何使一个input文本框随其中内容而变化长度。
第一:<input type="text" onkeydown="this.onkeyup();" onkeyup="this.size=(th ...
- Android SurfaceView使用
与View区别 更新View任务太重会导致UI线程阻塞 而SurfaceView不会,可以在UI线程之外更新UI 工程代码 SurfaceViewDemo.zip ------------------ ...
- Python自动化运维之23、Dom
文档对象模型(Document Object Model,DOM)是一种用于HTML和XML文档的编程接口.它给文档提供了一种结构化的表示方法,可以改变文档的内容和呈现方式.最为关心的是,DOM把网页 ...
- 使用java求高精度除法,要求保留N位小数
题目要求是高精度除法,要求保留N位小数(四舍五入),并且当整数部分为0时去除0的显示 import java.math.BigDecimal; import java.util.Scanner; pu ...