数论这个东西吧,虽说也是高中IMOer玩的数学游戏,颇具美学性的证明比较多。就目前所知,它在算法里是一些加密技术的基础,不多言,开始具体题目的分析。

问题一:已知数列{an},且a0 = 2 , a1 = 1 , a(n+1) = an + a(n-1),证明:若p为a(2k) - 2的素因子,则p也为a(2k+1) - 1的素因子。

分析:通过已知条件,有p | (a(2k) - 2) , 联系其递推式,则有p | {[a(2k+1)-1] - [a(2k-1)+1]}。接下来的部分解释考验数学观察力的时候了,通过计算an各项,我们会归纳出递推式的另外形式——a(2k-1)a(ak+1) = a(2k)^2 - 5。

∴[a(2k+1)-1] * [a(2k-1)+1] = a(2k)^2 - 6 + a(2k+1) - a(2k-1)

=a(2k)^2 +a(2k) - 6

= [a(2k) - 2][a(2k)+3]

∵p | (a(2k) - 2)

∴p | [a(2k+1)-1] * [a(2k-1)+1]

又∵p | {[a(2k+1)-1] - [a(2k-1)+1]}

∴p | a(2k+1)-1  且 p |  a(2k-1)+1

证毕。

《Mathematical Olympiad——数论》——整除的更多相关文章

  1. 《Mathematical Olympiad——组合数学》——染色问题

    恢复  继续关于<Mathematical Olympiad——组合数学>中问题的分析,这一篇文章将介绍有关染色的问题. 问题一: 将一些石头放入10行14列的矩形方格表内,允许在每个单元 ...

  2. 数学--数论--整除分块(巨TM详细,学不会,你来打我)

    1.概念 从一道例题说起 在介绍整除分块之前,我们先来看一道算数题:已知正整数n,求∑i=1n⌊ni⌋已知正整数n,求∑i=1n⌊ni⌋在介绍整除分块之前,我们先来看一道算数题: 已知正整数n,求∑i ...

  3. 《Mathematical Olympiad——组合数学》——操作和游戏

    这篇文章,我们开始对奥数中有关操作和游戏的问题进行分析和讨论,其实在信息学竞赛中涉及到的一些博弈问题(分析必胜策略)的问题(例如巴什博弈.尼姆博弈),本质上来讲,就是组合数学当中的组合游戏,并不是真正 ...

  4. 《Mathematical Olympiad——组合数学》——抽屉原理

    抽屉原理可以说是组合数学中最简单易懂的一个原理了,其最简单最原始的一个表达形式:对于n本书放到n-1个抽屉中,保证每个抽屉都要有书,则必存在一个抽屉中有2本书.但是这个简单的原理在很多问题中都能够巧妙 ...

  5. 数论整除——cf1059D

    用map是卡着过去的..题解用vector+离散化后常数小了十倍.. 总之就是把所有模数给保存下来然后离散化,再去匹配一下即可,最后有个细节 自己的 #include<bits/stdc++.h ...

  6. 经典书Discrete.Mathematics上的大神

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  7. INEQUALITY BOOKS

    来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...

  8. 网络找的 关于 “中吹” Janus Dongye

    看了这篇文章,感觉错过了一个精彩的人生. Janus Dongye, Coding Peasant at Universityof Cambridge (2012-present)(剑桥码农,2012 ...

  9. 简单数论之整除&质因数分解&唯一分解定理

    [整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a ...

随机推荐

  1. c#正则表达式采集数据

    protected void Page_Load(object sender, EventArgs e){ StringBuilder MyStringBuilder = new StringBuil ...

  2. Spring MVC返回json数据给Android端

    原先做Android项目时,服务端接口一直是别人写的,自己拿来调用一下,但下个项目,接口也要自己搞定了,我想用Spring MVC框架来提供接口,这两天便抽空浅学了一下该框架以及该框架如何返回json ...

  3. .net中使用JQuery Ajax判断用户名是否存在的方法

    //第一步:新建一个(*.aspx|*.html)Index.aspx页面 添加jquery 1 <html xmlns="http://www.w3.org/1999/xhtml&q ...

  4. 关于ASP.NET控件方面的学习(恢复版)

    前段时间没有把学习中的遇到的问题和解决方法详细总结,今天整理整理.. 鉴于我们这个研究生论文管理系统是小组形式,所以说虽然我只负责数据库,但是其它部分也多少有些工作方面的涉及,最后感谢各位同学和老师的 ...

  5. Relative与Absolute组合使用

    小伙伴们学习了绝对定位的方法:使用position:absolute可以实现被设置元素相对于浏览器(body)设置定位以后, 大家有没有想过可不可以相对于其它元素进行定位呢?答案是肯定的,当然可以.使 ...

  6. [转]一个备份MySQL数据库的简单Shell脚本

    本文翻译自 iSystemAdmin 的 <A Simple Shell Script to Backup MySQL Database> Shell脚本是我们写不同类型命令的一种脚本,这 ...

  7. Linux通配符

    * 任意字符 ?任意单个字符 [] 匹配指定 字符范围内的字符 [^] 指定范围之外的单个字符 常规字符集合 [a-z] a到z的所有小写字母 [A-Z] a到z的所有大写字母 [0-9] 0到9的所 ...

  8. 脚本学习python和linux-shell和jQuery(javascript)

    使用脚本可以方便管理,使用计算机. 打算学脚本来更好地用计算机系统,特别是Linux. 学python因为它开源,而且是C家族的语言,本来也是课程需要,再加上它确实很好,所以非常主打,之前看过perl ...

  9. MS SQL SERVER 2008 R2 实例服务启动出现10048错误解决办法

    由于个人癖好,把MSSQLSERVER服务禁止了开机启动,每次需要的时候就输入CMD命令开启.今天在开启的时候,系统提示“发生服务特定错误:10048”. 于是打开SQL Server配置管理器,发现 ...

  10. SQL服务器名称的更改

    SQL服务器名称的更改   1.使用select @@ServerName可以看到当前数据库的服务器名称 2.从Sys.SysServers表中可以看到当前的所有服务器名称 3.使用 sp_drops ...