数论这个东西吧,虽说也是高中IMOer玩的数学游戏,颇具美学性的证明比较多。就目前所知,它在算法里是一些加密技术的基础,不多言,开始具体题目的分析。

问题一:已知数列{an},且a0 = 2 , a1 = 1 , a(n+1) = an + a(n-1),证明:若p为a(2k) - 2的素因子,则p也为a(2k+1) - 1的素因子。

分析:通过已知条件,有p | (a(2k) - 2) , 联系其递推式,则有p | {[a(2k+1)-1] - [a(2k-1)+1]}。接下来的部分解释考验数学观察力的时候了,通过计算an各项,我们会归纳出递推式的另外形式——a(2k-1)a(ak+1) = a(2k)^2 - 5。

∴[a(2k+1)-1] * [a(2k-1)+1] = a(2k)^2 - 6 + a(2k+1) - a(2k-1)

=a(2k)^2 +a(2k) - 6

= [a(2k) - 2][a(2k)+3]

∵p | (a(2k) - 2)

∴p | [a(2k+1)-1] * [a(2k-1)+1]

又∵p | {[a(2k+1)-1] - [a(2k-1)+1]}

∴p | a(2k+1)-1  且 p |  a(2k-1)+1

证毕。

《Mathematical Olympiad——数论》——整除的更多相关文章

  1. 《Mathematical Olympiad——组合数学》——染色问题

    恢复  继续关于<Mathematical Olympiad——组合数学>中问题的分析,这一篇文章将介绍有关染色的问题. 问题一: 将一些石头放入10行14列的矩形方格表内,允许在每个单元 ...

  2. 数学--数论--整除分块(巨TM详细,学不会,你来打我)

    1.概念 从一道例题说起 在介绍整除分块之前,我们先来看一道算数题:已知正整数n,求∑i=1n⌊ni⌋已知正整数n,求∑i=1n⌊ni⌋在介绍整除分块之前,我们先来看一道算数题: 已知正整数n,求∑i ...

  3. 《Mathematical Olympiad——组合数学》——操作和游戏

    这篇文章,我们开始对奥数中有关操作和游戏的问题进行分析和讨论,其实在信息学竞赛中涉及到的一些博弈问题(分析必胜策略)的问题(例如巴什博弈.尼姆博弈),本质上来讲,就是组合数学当中的组合游戏,并不是真正 ...

  4. 《Mathematical Olympiad——组合数学》——抽屉原理

    抽屉原理可以说是组合数学中最简单易懂的一个原理了,其最简单最原始的一个表达形式:对于n本书放到n-1个抽屉中,保证每个抽屉都要有书,则必存在一个抽屉中有2本书.但是这个简单的原理在很多问题中都能够巧妙 ...

  5. 数论整除——cf1059D

    用map是卡着过去的..题解用vector+离散化后常数小了十倍.. 总之就是把所有模数给保存下来然后离散化,再去匹配一下即可,最后有个细节 自己的 #include<bits/stdc++.h ...

  6. 经典书Discrete.Mathematics上的大神

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  7. INEQUALITY BOOKS

    来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...

  8. 网络找的 关于 “中吹” Janus Dongye

    看了这篇文章,感觉错过了一个精彩的人生. Janus Dongye, Coding Peasant at Universityof Cambridge (2012-present)(剑桥码农,2012 ...

  9. 简单数论之整除&质因数分解&唯一分解定理

    [整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a ...

随机推荐

  1. Registry 类

    提供表示 Windows 注册表中的根项的 RegistryKey 对象,并提供访问项/值对的 static 方法. 继承层次结构 System.Object   Microsoft.Win32.Re ...

  2. 2017JAVA必读书籍

    1.深入理解Java虚拟机:JVM高级特性与最佳实践 2.Oracle查询优化改写技巧与案例 3.Effective Java 4.Spring3.x企业应用开发实战 5.Spring技术内幕:深入解 ...

  3. 表单提交对chrome记住密码的影响

    在处理注册.登录等含有用户名,密码的元素的表单时,chrome会主动的提示记住密码,然而这个功能在用户名的选择上真是耐人寻味,它总是寻找离password input控件最近的那一个文本框的内容,作为 ...

  4. Spring 创建bean的时机

    默认在启动spring容器的时候,spring容器配置文件中的类就已经创建完成对象了        在<bean>中添加属性lazy-init,默认值为false.    true  在c ...

  5. imod报错:error while loading shared libraries: libjpeg.so.62的解决办法

    the file libjpeg.so.62(in /usr/lib/libjpeg.so.62)belongs to the package libjpeg62so try to reinstall ...

  6. SVN版本控制图标不显示的解决方法~

    新系统每次装了svn之后,过了一段时间,安装的软件一多就会出现这个问题,哎,收录一下解决方案! 输入:win+R,输入regedit,调出注册表信息,按下Ctrl+F,在注册表里搜索"She ...

  7. 如何使一个input文本框随其中内容而变化长度。

    第一:<input type="text" onkeydown="this.onkeyup();" onkeyup="this.size=(th ...

  8. Android SurfaceView使用

    与View区别 更新View任务太重会导致UI线程阻塞 而SurfaceView不会,可以在UI线程之外更新UI 工程代码 SurfaceViewDemo.zip ------------------ ...

  9. Python自动化运维之23、Dom

    文档对象模型(Document Object Model,DOM)是一种用于HTML和XML文档的编程接口.它给文档提供了一种结构化的表示方法,可以改变文档的内容和呈现方式.最为关心的是,DOM把网页 ...

  10. 使用java求高精度除法,要求保留N位小数

    题目要求是高精度除法,要求保留N位小数(四舍五入),并且当整数部分为0时去除0的显示 import java.math.BigDecimal; import java.util.Scanner; pu ...