归并排序!!!!!!!!!!

 /*
归并排序+求逆序数
*/
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stdlib.h>
using namespace std;
typedef __int64 int64;
const int maxn = ;
int64 a[ maxn ],Sort[ maxn ];
int64 res; void init(){
res = ;
} void merge( int L,int R ){
int mid = (L+R)/;
int i = L;
int j = mid+;
int pos = L;
while( i<=mid&&j<=R ){
if( a[i]<a[j] )
Sort[ pos++ ] = a[i++];
else{
Sort[ pos++ ] = a[j++];
res += (mid-i+);
}
}
while( i<=mid )
Sort[ pos++ ] = a[i++];
while( j<=R )
Sort[ pos++ ] = a[j++];
for( int k=L;k<=R;k++ )
a[k] = Sort[k];
} void merge_sort( int L,int R ){
int mid = (L+R)/;
if( L<R ){
merge_sort( L,mid );
merge_sort( mid+,R );
merge( L,R );
}
return ;
} int main(){
int n;
while( scanf("%d",&n),n ){
for( int i=;i<=n;i++ )
scanf("%I64d",&a[i]);
init();
merge_sort( ,n );
printf("%I64d\n",res);
}
return ;
}

POJ2299+逆序数的更多相关文章

  1. poj2299解题报告(归并排序求逆序数)

    POJ 2299,题目链接http://poj.org/problem?id=2299 题意: 给出长度为n的序列,每次只能交换相邻的两个元素,问至少要交换几次才使得该序列为递增序列. 思路: 其实就 ...

  2. POJ2299 Ultra-QuickSort(归并排序求逆序数)

    归并排序求逆序数   Time Limit:7000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descri ...

  3. 线段树求逆序数方法 HDU1394&amp;&amp;POJ2299

    为什么线段树能够求逆序数? 给一个简单的序列 9 5 3 他的逆序数是3 首先要求一个逆序数有两种方式:能够从头開始往后找比当前元素小的值,也能够从后往前找比当前元素大的值,有几个逆序数就是几. 线段 ...

  4. poj2299--归并排序求逆序数

    /** \brief poj2299  *  * \param date 2014/8/5  * \param state AC  * \return memory 4640K time 3250ms ...

  5. HDU3465 树状数组逆序数

    Life is a Line Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)T ...

  6. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

  7. 递归O(NlgN)求解逆序数

    导言 第一次了解到逆序数是在高等代数课程上.当时想计算一个数列的逆序数直觉就是用两重循环O(n^2)暴力求解.现在渐渐对归并算法有了一定的认识,因此决定自己用C++代码小试牛刀. 逆序数简介 由自然数 ...

  8. FZU 2184 逆序数还原

    传送门 Description 有一段时间Eric对逆序数充满了兴趣,于是他开始求解许多数列的逆序数(对于由1...n构成的一种排列数组a,逆序数即为满足i<j,ai>aj的数字对数),但 ...

  9. HDU 1394 Minimum Inversion Number(最小逆序数/暴力 线段树 树状数组 归并排序)

    题目链接: 传送门 Minimum Inversion Number Time Limit: 1000MS     Memory Limit: 32768 K Description The inve ...

随机推荐

  1. SqLite 框架 GreenDAO

    GreenDAO: 会生成一个数据访问,不用我们书写访问数据库的代码: 核心原理图 生成代码 就是用生成器生成一个对应的java类的生成工厂 public static void main(Strin ...

  2. PHP 实现对象的持久层,数据库使用MySQL

    http://www.xuebuyuan.com/1236808.html 心血来潮,做了一下PHP的对象到数据库的简单持久层. 不常用PHP,对PHP也不熟,关于PHP反射的大部分内容都是现学的. ...

  3. yield关键字的用法

    在上一篇文章中,说了下foreach的用法,但是还是比较复杂的,要实现接口才能进行遍历,有没有简单些的方法呢?答案是肯定的.且看下面. yield关键字的用法: 1.为当前类型添加一个任意方法,但是要 ...

  4. oracle数据同步方案

    数据同步方案:--用DBLINK 创建与所需同步表的链接------------------------------------------------------------------------ ...

  5. WCF编程系列(七)信道及信道工厂

    WCF编程系列(七)信道及信道工厂   信道及信道栈 前面已经提及过,WCF中客户端与服务端的交互都是通过消息来进行的.消息从客户端传送到服务端会经过多个处理动作,在WCF编程模型中,这些动作是按层 ...

  6. .net 生成pdf表格

    只需要建一个类文件就搞定了 public class CreatePDF { public static CreatePDF Current { get { return new CreatePDF( ...

  7. python 自动化之路 day 09 进程、线程、协程篇

    本节内容 操作系统发展史介绍 进程.与线程区别 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者 ...

  8. yoga-moblie-res

  9. std::string和int类型的相互转换(C/C++)

    字符串和数值之前转换,是一个经常碰到的类型转换. 之前字符数组用的多,std::string的这次用到了,还是有点区别,这里提供C++和C的两种方式供参考: 优缺点:C++的stringstream智 ...

  10. css important

    !important是CSS1就定义的语法,作用是提高指定样式规则的应用优先权.语法格式{ cssRule !important },即 写在定义的最后面,例如:box{color:red !impo ...