careercup-递归和动态规划 9.10
9.10 给你一堆n个箱子,箱子宽w,高h,深d。箱子不能翻转,将箱子堆起来时,下面箱子的宽度、高度和深度必须大于上面的箱子。实现一个方法,搭出最高的一堆箱子,箱堆的高度为每个箱子高度的总和。
解法:
要解决此题,我们需要找到不同子问题之间的关系。
假设我们又以下这些箱子:b1、b2,...,bn。能够堆出的最高箱堆的高度等于max(底部为b1的最高箱堆,底部为b2的最高箱堆,...,底部为bn的最高箱堆)。也就是说,只要试着用每个箱子作为箱堆底部并搭出可能的最高高度,就能找出箱对的最高高度。
回溯的实现方法:
#include<iostream>
#include<vector>
using namespace std; struct box
{
int height;
int wide;
int depth;
box(int h,int w,int d):height(h),wide(w),depth(d) {}
}; bool isValid(vector<box> &path,box b)
{
if(path.empty())
return true;
box top=path[path.size()-];
return b.depth<top.depth&&b.height<top.height&&b.wide<top.wide;
} void helper(vector<box> &boxes,vector<box> &path,int &maxHeight)
{
int i;
for(i=;i<boxes.size(); i++)
{
if(isValid(path,boxes[i]))
{
path.push_back(boxes[i]);
helper(boxes,path,maxHeight);
path.pop_back();
}
}
if(i==boxes.size())
{
int j,sum=;
for(j=; j<path.size(); j++)
{
sum+=path[j].height;
}
if(sum>maxHeight)
maxHeight=sum;
return;
}
}
int maxBoxTower(vector<box> &boxes)
{
vector<box> path;
int maxHeight=;
helper(boxes,path,maxHeight);
return maxHeight;
} int main()
{
vector<box> b= {box(,,),box(,,),box(,,),box(,,)};
cout<<maxBoxTower(b)<<endl;
}
careercup-递归和动态规划 9.10的更多相关文章
- 《Cracking the Coding Interview》——第9章:递归和动态规划——题目10
2014-03-20 04:15 题目:你有n个盒子,用这n个盒子堆成一个塔,要求下面的盒子必须在长宽高上都严格大于上面的.如果你不能旋转盒子变换长宽高,这座塔最高能堆多高? 解法:首先将n个盒子按照 ...
- 70. Climbing Stairs【leetcode】递归,动态规划,java,算法
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- 算法 递归 迭代 动态规划 斐波那契数列 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- 9.9递归和动态规划(八)——给定数量不限的硬币,币值为25分,10分,5分,1分,计算n分有几种表示法
/** * 功能:给定数量不限的硬币.币值为25分,10分.5分.1分,计算n分有几种表示法. */ public static int makeChange(int n){ return make ...
- 面试题目——《CC150》递归与动态规划
面试题9.1:有个小孩正在上楼梯,楼梯有n个台阶,小孩一次可以上1阶.2阶或者3阶.实现一个方法,计算小孩有多少种上楼梯的方式. 思路:第4个数是前三个数之和 注意:能不能使用递归,能不能建立一个很大 ...
- python---通过递归和动态规划策略解决找零钱问题
也是常见套路. # coding = utf-8 def rec_mc(coin_value_list, change, know_results): min_coins = change if ch ...
- OptimalSolution(1)--递归和动态规划(1)斐波那契系列问题的递归和动态规划
一.斐波那契数列 斐波那契数列就是:当n=0时,F(n)=0:当n=1时,F(n)=1:当n>1时,F(n) = F(n-1)+F(n-2). 根据斐波那契数列的定义,斐波那契数列为(从n=1开 ...
- C#递归、动态规划计算斐波那契数列
//递归 public static long recurFib(int num) { if (num < 2) ...
- Idea 02.暴力递归与动态规划(1)
1,关键词解释 1.1 暴力递归: 1, 把问题转化为规模缩小了的同类问题的子问题 2, 有明确的不需要继续进行递归的条件(base case) 3, 有当得到了子问题的结果之后的决策过程 4, 不记 ...
- 《Cracking the Coding Interview》——第9章:递归和动态规划——题目8
2014-03-20 04:04 题目:给你不限量的1分钱.5分钱.10分钱.25分钱硬币,凑成n分钱总共有多少种方法? 解法:理论上来说应该是有排列组合的公式解的,但推导起来太麻烦而且换个数据就又得 ...
随机推荐
- Spring顶级项目以及Spring cloud组件
作为java的屌丝,基本上跟上spring屌丝的步伐,也就跟上了主流技术. spring 顶级项目: Spring IO platform:用于系统部署,是可集成的,构建现代化应用的版本平台,具体来说 ...
- 自定义web服务器(四)
关于HTTP协议的具体内容,前面章节已经有所讲解,相信读者已有所了解,在此不在累述,本章节讲解自定义web服务器. 一,.net提供自定义Web服务器的类 以下只是写主要的类 1.HTTPListe ...
- 创建通用型framework
http://years.im/Home/Article/detail/id/52.html http://www.cocoachina.com/industry/20131204/7468.html ...
- css滑动门制作圆角按钮
之前做项目的时候,基本都是将圆角背景图切成三块,故而每次用的标签都超级多,a标签中总是包含三个span,然后里面还得放按钮,导航冗余标签极多. 事实上是之前理解的滑动门的精髓不够到位. 现在有两种方式 ...
- HTTP缓存是如何实现
浏览器是如何知道使用缓存的,其实这都是通过http中,浏览器将最后修改时间发送请求给web服务器,web服务器收到请求后跟服务器上的文档最后修改的时间对比,如果web服务器上最新文档修改时间小于或者等 ...
- sharepoint2010网站根据权限隐藏ribbon
转:http://www.it165.net/design/html/201302/1734.html 项目要求让普通用户看不到"网站操作",为了解决该问题,我找了好几篇博客,但都 ...
- Word对象模型 (.Net Perspective)
本文主要针对在Visual Studio中使用C# 开发关于Word的应用程序 来源:Understandingthe Word Object Model from a .NET Developer' ...
- 教你如何通过ICCID找回丢失的的iPhone
22日晚买了FACETIME,在某宝上买的.价格不贵,可以查到偷手机的人注册FT的号码,还可以查询手机被刷机和被维修的日期(这个很关键) 27日手机被刷机,遂买了某宝查询ICCID的服务,找到一串IC ...
- lightoj 1003
有向图拓扑排序,判段是否存在. #include<map> #include<cstdio> #include<string> #include<cstrin ...
- 三星S4使用体验(Markdown版)
由于各种原因,前几天把手上的HTC 606w给二手交易了,然后二手买了一只全新的韩版S4蓝色e330s作为主力手机使用.现在主要就用户体验的角度对这只新的手机做次评价. 第一次做手机的评价,不知道写成 ...