careercup-递归和动态规划 9.10
9.10 给你一堆n个箱子,箱子宽w,高h,深d。箱子不能翻转,将箱子堆起来时,下面箱子的宽度、高度和深度必须大于上面的箱子。实现一个方法,搭出最高的一堆箱子,箱堆的高度为每个箱子高度的总和。
解法:
要解决此题,我们需要找到不同子问题之间的关系。
假设我们又以下这些箱子:b1、b2,...,bn。能够堆出的最高箱堆的高度等于max(底部为b1的最高箱堆,底部为b2的最高箱堆,...,底部为bn的最高箱堆)。也就是说,只要试着用每个箱子作为箱堆底部并搭出可能的最高高度,就能找出箱对的最高高度。
回溯的实现方法:
#include<iostream>
#include<vector>
using namespace std; struct box
{
int height;
int wide;
int depth;
box(int h,int w,int d):height(h),wide(w),depth(d) {}
}; bool isValid(vector<box> &path,box b)
{
if(path.empty())
return true;
box top=path[path.size()-];
return b.depth<top.depth&&b.height<top.height&&b.wide<top.wide;
} void helper(vector<box> &boxes,vector<box> &path,int &maxHeight)
{
int i;
for(i=;i<boxes.size(); i++)
{
if(isValid(path,boxes[i]))
{
path.push_back(boxes[i]);
helper(boxes,path,maxHeight);
path.pop_back();
}
}
if(i==boxes.size())
{
int j,sum=;
for(j=; j<path.size(); j++)
{
sum+=path[j].height;
}
if(sum>maxHeight)
maxHeight=sum;
return;
}
}
int maxBoxTower(vector<box> &boxes)
{
vector<box> path;
int maxHeight=;
helper(boxes,path,maxHeight);
return maxHeight;
} int main()
{
vector<box> b= {box(,,),box(,,),box(,,),box(,,)};
cout<<maxBoxTower(b)<<endl;
}
careercup-递归和动态规划 9.10的更多相关文章
- 《Cracking the Coding Interview》——第9章:递归和动态规划——题目10
2014-03-20 04:15 题目:你有n个盒子,用这n个盒子堆成一个塔,要求下面的盒子必须在长宽高上都严格大于上面的.如果你不能旋转盒子变换长宽高,这座塔最高能堆多高? 解法:首先将n个盒子按照 ...
- 70. Climbing Stairs【leetcode】递归,动态规划,java,算法
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- 算法 递归 迭代 动态规划 斐波那契数列 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- 9.9递归和动态规划(八)——给定数量不限的硬币,币值为25分,10分,5分,1分,计算n分有几种表示法
/** * 功能:给定数量不限的硬币.币值为25分,10分.5分.1分,计算n分有几种表示法. */ public static int makeChange(int n){ return make ...
- 面试题目——《CC150》递归与动态规划
面试题9.1:有个小孩正在上楼梯,楼梯有n个台阶,小孩一次可以上1阶.2阶或者3阶.实现一个方法,计算小孩有多少种上楼梯的方式. 思路:第4个数是前三个数之和 注意:能不能使用递归,能不能建立一个很大 ...
- python---通过递归和动态规划策略解决找零钱问题
也是常见套路. # coding = utf-8 def rec_mc(coin_value_list, change, know_results): min_coins = change if ch ...
- OptimalSolution(1)--递归和动态规划(1)斐波那契系列问题的递归和动态规划
一.斐波那契数列 斐波那契数列就是:当n=0时,F(n)=0:当n=1时,F(n)=1:当n>1时,F(n) = F(n-1)+F(n-2). 根据斐波那契数列的定义,斐波那契数列为(从n=1开 ...
- C#递归、动态规划计算斐波那契数列
//递归 public static long recurFib(int num) { if (num < 2) ...
- Idea 02.暴力递归与动态规划(1)
1,关键词解释 1.1 暴力递归: 1, 把问题转化为规模缩小了的同类问题的子问题 2, 有明确的不需要继续进行递归的条件(base case) 3, 有当得到了子问题的结果之后的决策过程 4, 不记 ...
- 《Cracking the Coding Interview》——第9章:递归和动态规划——题目8
2014-03-20 04:04 题目:给你不限量的1分钱.5分钱.10分钱.25分钱硬币,凑成n分钱总共有多少种方法? 解法:理论上来说应该是有排列组合的公式解的,但推导起来太麻烦而且换个数据就又得 ...
随机推荐
- Tomcat 6.0下配置HTTPS
最近项目需要使用到https,所以回顾整理了一下,其实在tomcat的文档中已经有了详细描述,我们启动Tomcat后,可以在docs文档中找到 地址如下:http://localhost:8080/d ...
- 奇怪的JS
有的时候发现JS是一门很高深的语言,不是我等俗人可以学会,没有private,没有public不说,居然连Class都没有,这个世界就是这样,有的东西你不一定非要想通,也不一定非要剖根问底,有的时候你 ...
- [Android] 修改设备访问权限
在硬件抽象层模块中,我们是调用open函数来打开对应的设备文件的.例如,在2.3.2小节中开发的硬件抽象层模块freg中,函数freg_device_open调用open函数来打开设备文件/dev/f ...
- 【HDOJ】3480 Division
斜率dp+滚动数组. /* 3480 */ #include <iostream> #include <sstream> #include <string> #in ...
- 【HDOJ】1258 Sum It Up
典型的深搜,剪枝的时候需要跳过曾经搜索过的相同的数目,既满足nums[i]=nums[i-1]&&visit[i-1]==0,visit[i-1]==0可以说明该点已经测试过. #in ...
- MVC——数据库增删改查(Razor)
一.显示信息 .Models(模板) private MyDBDataContext _context = new MyDBDataContext(); //定义一个变量取出所有数据 public L ...
- JQuery datepicker 用法
JQuery datepicker 用法 jQuery UI很强大,其中的日期选择插件Datepicker是一个配置灵活的插件,我们可以自定义其展示方式,包括日期格式.语言.限制选择日期范围.添加 ...
- 利用HttpWebRequest和HttpWebResponse获取Cookie
之前看过某个同学的一篇有关与使用JSoup解析学校图书馆的文章,仔细一看,发现竟然是同校!!既然对方用的是java,那么我也就来个C#好了,虽然我的入门语言是java. C#没有JSoup这样方便的东 ...
- Android的string-array数据源简单使用
在Android中,用string-array是一种简单的提取XML资源文件数据的方法. 例子如下: 把相应的数据放到values文件夹的arrays.xml文件里 <?xml version= ...
- (转载) mysql中,option是保留字段么?
(转载)http://book.77169.org/101/50364.htm update thread set active=0,option='lock',manager='书生' where ...