差分,令$b_{i}=a_{i-1}\oplus a_{i}$,对于一个区间$[l,r]$,相当于令$a_{l-1}=a_{r+1}=0$之后求出$b_{l..r+1}$,对区间$[i-k,i)$异或1这个操作可以看作令$b_{i}$和$b_{i-k}$异或1,要求使得$b_{i}$全部为0

这就相当于要求$\forall 0\le i<k$,$b_{l..r+1}$中模$k$余$i$的位置异或为0,对$v_{0..k-1}$随机赋值,那么可以看作判断$\bigoplus_{l\le i\le r+1,i\equiv j(mod\ k)}b_{i}v_{j}=0$,这个可以用前缀和维护(特别的,要特判$b_{l}=a_{l}$和$b_{r+1}=a_{r}$)

判定完无解后,(若有解)考虑如何求最少操作次数:

假设枚举$i$,对于模$k$余$i$且为1的$b_{j}$,将这些$j$记录下来,写作$pos_{1},pos_{2},...,pos_{2m}$(由于有解,必然是偶数个),答案即为$\frac{\sum_{i=1}^{m}pos_{2i}-pos_{2i-1}}{k}$(可以看作一个1不断向后移动,与之后第一个1相消)

对于相邻的模$k$余$i$的位置必然一正一负,通过前缀和(强制最后一个出现的数符号为正)来维护即可(同样要特判$l$和$r+1$),总复杂度为$o(n+m\log_{2}n)$

对于$l$和$r+1$的特判也可以通过$sum_{i,0/1}$表示假设$b_{i}=0/1$时的答案来避免

(另外要特判$k=1$,此时答案即为区间内1的个数)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 2000005
4 #define ll long long
5 int n,t,q,l,r,ans,a[N],b[N],v[N],f[N];
6 ll g[N],sum[N][2];
7 char s[N];
8 int main(){
9 srand(time(0));
10 scanf("%d%d%d%s",&n,&t,&q,s);
11 for(int i=0;i<n;i++)a[i+1]=s[i]-'0';
12 if (t==1){
13 for(int i=1;i<=n;i++)a[i]+=a[i-1];
14 for(int i=1;i<=q;i++){
15 scanf("%d%d",&l,&r);
16 printf("%d\n",a[r]-a[l-1]);
17 }
18 return 0;
19 }
20 for(int i=1;i<=n;i++)b[i]=(a[i-1]^a[i]);
21 for(int i=0;i<t;i++)v[i]=1LL*rand()*rand()%(1<<30);
22 for(int i=1;i<=n;i++)f[i]=(f[i-1]^(b[i]*v[i%t]));
23 for(int i=1;i<=n+1;i++){
24 sum[i][0]=sum[i-1][b[i-1]];
25 sum[i][1]=sum[i-1][b[i-1]]+i-2*g[i%t];
26 if (b[i])g[i%t]=i-g[i%t];
27 }
28 for(int i=1;i<=q;i++){
29 scanf("%d%d",&l,&r);
30 ans=(f[l]^f[r]);
31 if (a[l])ans^=v[l%t];
32 if (a[r])ans^=v[(r+1)%t];
33 if (ans)printf("-1\n");
34 else{
35 if (a[l]!=b[l])printf("%lld\n",(sum[r+1][a[r]]-sum[l][1])/t);
36 else printf("%lld\n",(sum[r+1][a[r]]-sum[l-1][b[l-1]])/t);
37 }
38 }
39 return 0;
40 }

[loj6500]操作的更多相关文章

  1. LOJ6500. 「雅礼集训 2018 Day2」操作(哈希+差分)

    题目链接 https://loj.ac/problem/6500 题解 区间取反 \(01\) 串的经典套路是差分.我们令 \(b_i = a_i\ {\rm xor}\ a_{i - 1}\)(\( ...

  2. 关于DOM的操作以及性能优化问题-重绘重排

     写在前面: 大家都知道DOM的操作很昂贵. 然后贵在什么地方呢? 一.访问DOM元素 二.修改DOM引起的重绘重排 一.访问DOM 像书上的比喻:把DOM和JavaScript(这里指ECMScri ...

  3. Sql Server系列:分区表操作

    1. 分区表简介 分区表在逻辑上是一个表,而物理上是多个表.从用户角度来看,分区表和普通表是一样的.使用分区表的主要目的是为改善大型表以及具有多个访问模式的表的可伸缩性和可管理性. 分区表是把数据按设 ...

  4. C# ini文件操作【源码下载】

    介绍C#如何对ini文件进行读写操作,C#可以通过调用[kernel32.dll]文件中的 WritePrivateProfileString()和GetPrivateProfileString()函 ...

  5. js学习笔记:操作iframe

    iframe可以说是比较老得话题了,而且网上也基本上在说少用iframe,其原因大致为:堵塞页面加载.安全问题.兼容性问题.搜索引擎抓取不到等等,不过相对于这些缺点,iframe的优点更牛,跨域请求. ...

  6. jquery和Js的区别和基础操作

    jqery的语法和js的语法一样,算是把js升级了一下,这两种语法可以一起使用,只不过是用jqery更加方便 一个页面想要使用jqery的话,先要引入一下jqery包,jqery包从网上下一个就可以, ...

  7. ASP.NET Aries 入门开发教程7:DataGrid的行操作(主键操作区)

    前言: 抓紧勤奋,再接再励,预计共10篇来结束这个系列. 上一篇介绍:ASP.NET Aries 入门开发教程6:列表数据表格的格式化处理及行内编辑 本篇介绍主键操作区相关内容. 1:什么时候有默认的 ...

  8. 如何在高并发环境下设计出无锁的数据库操作(Java版本)

    一个在线2k的游戏,每秒钟并发都吓死人.传统的hibernate直接插库基本上是不可行的.我就一步步推导出一个无锁的数据库操作. 1. 并发中如何无锁. 一个很简单的思路,把并发转化成为单线程.Jav ...

  9. 【翻译】MongoDB指南/CRUD操作(四)

    [原文地址]https://docs.mongodb.com/manual/ CRUD操作(四) 1 查询方案(Query Plans) MongoDB 查询优化程序处理查询并且针对给定可利用的索引选 ...

随机推荐

  1. AT3950 [AGC022E] Median Replace

    题目传送门 Description 有一个长度为 \(n\) 的 \(01\) 串,里面有一些还没有确定,我们标记为 ? .可以进行若干次操作,每次操作可以把三个相邻的数替换成它们的中位数.问有多少种 ...

  2. 架构师必备:MySQL主从延迟解决办法

    上一篇文章介绍了MySQL主从同步的原理和应用,本文总结了MySQL主从延迟的原因和解决办法.如果主从延迟过大,会影响到业务,应当采用合适的解决方案. MySQL主从延迟的表现 先insert或upd ...

  3. 【转】C语言 printf格式控制符 完全解析

    printf的格式控制的完整格式:%     -     0     m.n     l或h     格式字符下面对组成格式说明的各项加以说明:①%:表示格式说明的起始符号,不可缺少.②-:有-表示左 ...

  4. 【Spring】IoC容器 - 依赖查找

    前言 上一篇文章已经学习了[IoC的主要实现策略]有2种: 1.依赖查找 2.依赖注入 这里稍加详细的介绍一下依赖查找 1.依赖查找的方式 依赖查找的方式可以以多种维度来划分: 1.按名称/类型/注解 ...

  5. oo第一单元学习总结

    写在开头: 第一次接触面向对象思想和java语言,在学习以及完成作业的过程经历了一个比较痛苦的过程, 虽然在每次写作业时总是会有一些小小的抱怨,虽然写出的代码还是很差, 但是看到自己有所进步,还是感觉 ...

  6. Spring Cloud Alibaba 的服务注册与发现

    Spring Cloud Alibaba 服务发现例子 一.需求 1.提供者完成的功能 2.消费者完成的功能 3.可以附加的额外配置 二.实现步骤 1.总的依赖引入 2.服务提供者和发现者,引入服务发 ...

  7. Django(72)Django认证系统库--djoser

    djoser是什么?   作用:Django认证系统的REST实现.djoser库提供了一组Django Rest Framework视图,用于处理注册.登录.注销.密码重置和帐户激活等基本操作.它适 ...

  8. Dubbo的反序列化安全问题-Hessian2

    0 前言 本篇是系列文章的第一篇,主要看看Dubbo使用反序列化协议Hessian2时,存在的安全问题.文章需要RPC.Dubbo.反序列化等前提知识点,推荐先阅读和体验Dubbo以及反序列化漏洞. ...

  9. 攻防世界 WEB 高手进阶区 unserialize3 Writeup

    攻防世界 WEB 高手进阶区 unserialize3 Writeup 题目介绍 题目考点 PHP反序列化 __wakeup漏洞 Writeup 题名 unserialize 是反序列化函数名 了解一 ...

  10. 设计模式二--模板方法Template method

    模式分类: 书籍推荐:重构-改善既有代码的设计 重构获得模式 设计模式:现代软件设计的特征是"需求的频繁变化".设计模式的要点是 "寻找变化点,然后在变化点处应用设计模式 ...