//
// Created by Administrator on 2021/8/5.
// #ifndef C__TEST01_NQUEENS_HPP
#define C__TEST01_NQUEENS_HPP #include <iostream>
#include <vector>
#include <unordered_set>
#include <unordered_map> using namespace std;
class NodeGraph; /* n皇后问题是指在N*N的棋盘上要摆n个皇后
* 要求任何两个皇后不同行不同列
* 给定一个整数n,返回n皇后的摆法有多少种
* n = 1, 返回1
* n = 2 or 3, 无论怎么摆都不行,返回0
* n = 8, 返回92
* */
class NQueens {
public:
int num1(int n){
vector<int> record(n);//第i行的皇后放在第几列
return process1(0, record, n);
} //目前来到的第i行,一共有n行
int process1(int i, vector<int> record, int n){
if(i == n){
return 1; //表示已经到了最后一行,所以次数加1
}
int res = 0;
for (int j = 0; j < n; ++j) {
//第i行的皇后放在第j列是不是有效的
if(isValid(record, i, j)){
record[i] = j;
res += process1(i+1, record, n);
}
}
return res;
}
bool isValid(vector<int> record, int i, int j){
for(int k = 0; k < i; k++){
if(j == record[k] || abs(record[k]-j) == abs(i-k)){
return false;
}
}
return true;
} int num2(int &n){
if(n < 1 || n > 32){
return 0;
}
int limit = n == 32 ? -1 : (1<<n)-1;
// -1就是32个1,
// 其余情况, 比如n是5 就是 100000-1 = (前面凑0)011111
return process2(limit, 0, 0, 0);
} int process2(int &limit,
int colLim, //列的限制, 1的位置不能放皇后,0的位置可以
int leftDiaLim,//左斜线的限制, 1的位置不能放皇后,0的位置可以
int rightDiaLim //右斜线的限制, 1的位置不能放皇后,0的位置可以
){
if(colLim == limit){
return 1;
}
int pos = 0;
int mostRightOne = 0;
//三个限制是或的关系,或在一起的1的位置不能放皇后
//再取反,就是0的位置不能放皇后
//与 limit 与,就是可以放皇后的位置
pos = limit & (~(colLim|leftDiaLim|rightDiaLim));
int res = 0;
while(pos != 0){
mostRightOne = pos & (~pos + 1);//取到可摆放位置的最右边的1
pos = pos - mostRightOne; //剩下的可以拜访的位置
res += process2(limit,
mostRightOne|colLim,
(mostRightOne|leftDiaLim) << 1,
(mostRightOne|rightDiaLim) >> 1);
}
return res;
}
}; #endif //C__TEST01_NQUEENS_HPP

N皇后问题解法的更多相关文章

  1. java递归求八皇后问题解法

    八皇后问题 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处 ...

  2. 计蒜课--2n皇后、n皇后的解法(一般操作hhh)

    给定一个 n*nn∗n 的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入 nn 个黑皇后和 nn个白皇后,使任意的两个黑皇后都不在同一行.同一列或同一条斜线(包括正负斜线)上,任意的两个白皇后都 ...

  3. N皇后回溯解法 leetcode N-Queens

    class Solution { public: vector<vector<string> > solveNQueens(int n) { vector<vector& ...

  4. Python学习二(生成器和八皇后算法)

    看书看到迭代器和生成器了,一般的使用是没什么问题的,不过很多时候并不能用的很习惯 书中例举了经典的八皇后问题,作为一个程序员怎么能够放过做题的机会呢,于是乎先自己来一遍,于是有了下面这个ugly的代码 ...

  5. JS算法之八皇后问题(回溯法)

    八皇后这个经典的算法网上有很多种思路,我学习了之后自己实现了一下,现在大概说说我的思路给大家参考一下,也算记录一下,以免以后自己忘了要重新想一遍. 八皇后问题 八皇后问题,是一个古老而著名的问题,是回 ...

  6. Leetcode之回溯法专题-51. N皇后(N-Queens)

    Leetcode之回溯法专题-51. N皇后(N-Queens) n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给 ...

  7. N皇后问题(递归)

    //八皇后递归解法 //#include<iostream> //using namespace std; #include<stdio.h> ] = {-,-,-,-,-,- ...

  8. 各大IT公司校园招聘程序猿笔试、面试题集锦

    转自:http://blog.csdn.net/hackbuteer1/article/details/7959921#t4 百度一面 1.给定一个字符串比如“abcdef”,要求写个函数编程“def ...

  9. [Leetcode][Python]52: N-Queens II

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 52: N-Queens IIhttps://oj.leetcode.com/ ...

随机推荐

  1. 前段之jQuery

    一.jQuery介绍 jQuery是一个轻量级的.兼容多浏览器的JavaScript库. jQuery使用户能够更方便地处理HTML Document.Events.实现动画效果.方便地进行Ajax交 ...

  2. 题解 GRE Words Revenge

    题目传送门 题目大意 给出 \(m\) 次操作,分别为以下两种操作: 学习一个单词 给出一个段落,查询里面有多少个学过的单词.注意,如果学习过 \(\text{ab,bc}\) ,当前查询段落为 \( ...

  3. Linux常用命令,查看树形结构、删除目录(文件夹)、创建文件、删除文件或目录、复制文件或目录(文件夹)、移动、查看文件内容、权限操作

    5.查看树结构(tree) 通常情况下系统未安装该命令,需要yum install -y tree安装 直接使⽤tree显示深度太多,⼀般会使⽤ -L选项⼿⼯设定⽬录深度 格式:tree -L n [ ...

  4. Java中类及方法的加载顺序

    1. 虚拟机在首次加载Java类时,会对静态代码块.静态成员变量.静态方法进行一次初始化(静态间按顺序执行). 2. 只有在调用new方法时才会创建类的实例. 3. 类实例创建过程:父子继承关系,先父 ...

  5. [no code][scrum meeting] Alpha 14

    项目 内容 会议时间 2020-04-22 会议主题 周中讨论会议 会议时长 45min 参会人员 全体成员 $( "#cnblogs_post_body" ).catalog() ...

  6. 2020BUAA软工提问回顾和个人总结作业

    2020BUAA软工提问回顾和个人总结作业 17373010 杜博玮 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 提问回顾和个人总结作业 我在 ...

  7. Asp.CAore往Vue前端传application/octet-stream类型文件流

    题外话:当传递文件流时要确定文件流的类型,但也有例外就是application/octet-stream类型,主要是只用来下载的类型,这个类型简单理解意思就是通用类型类似 var .object.ar ...

  8. netty入门实现简单的echo程序

    最近看以往在程序中编写的代码,发现有一个功能是使用socket通讯来实现的,而那个时候使用的是基于bio的阻塞io来实现的,最近在看netty,发现可以使用netty来使用nio的方式来实现,此博客记 ...

  9. eureka服务端的高可用

    eureka client的高可用这个很简单,只需要向eureka服务端上多注册几个实例即可,那么eureka server端如何实现高可用呢?其实eureka server 端也是可以做为一个客户端 ...

  10. Noip模拟8 2021.6.17

    T1 星际旅行 仔细一看,发现像一个欧拉路(简称一笔画). 满足"可以一笔画"的条件是: 1.所有点都有偶数条连边; 2.有偶数个点连奇数条边; 满足以上两个条件的任意一个即可一笔 ...