先对其求出前缀异或和,然后$o(k)$次枚举,每次选择最大值,考虑如何维护
可以全局开一个堆,维护出每一个点的最大值的最大值,那么相当于要在一个点中删去一个点再找到最大值
将这些删去的点重新建成一颗trie树,与所有数构成的trie树减一下,就可以找到新的最大值了,再用堆维护即可
有一些细节:1.数值范围较大,需要开long long;2.由于无法判断位置关系,因此要取2k个并将答案除以2

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 500005
4 #define ll long long
5 set<pair<ll,int> >s;
6 int V,n,m,ch[N*70][2],sz[N*70];
7 ll ans,a[N];
8 void add(int k,ll x){
9 sz[k]++;
10 for(int i=31;i>=0;i--){
11 int p=((((1LL<<i)&x)>0));
12 if (!ch[k][p])ch[k][p]=++V;
13 k=ch[k][p];
14 sz[k]++;
15 }
16 }
17 ll query(int k1,int k2,ll x){
18 ll ans=0;
19 for(int i=31;i>=0;i--){
20 int p=(((1LL<<i)&x)==0);
21 if (sz[ch[k1][p]]==sz[ch[k2][p]])p^=1;
22 ans+=p*(1LL<<i);
23 k1=ch[k1][p];
24 k2=ch[k2][p];
25 }
26 return ans;
27 }
28 int main(){
29 scanf("%d%d",&n,&m);
30 for(int i=1;i<=n;i++){
31 scanf("%lld",&a[i]);
32 a[i]^=a[i-1];
33 }
34 V=n+2;
35 for(int i=0;i<=n;i++)add(1,a[i]);
36 for(int i=0;i<=n;i++)s.insert(make_pair(-(a[i]^query(1,i+2,a[i])),i));
37 m*=2;
38 for(int i=1;i<=m;i++){
39 ans-=(*s.begin()).first;
40 int k=(*s.begin()).second;
41 s.erase(s.begin());
42 add(k+2,query(1,k+2,a[k]));
43 s.insert(make_pair(-(a[k]^query(1,k+2,a[k])),k));
44 }
45 printf("%lld",ans/2);
46 }

[loj3048]异或粽子的更多相关文章

  1. LOJ3048 「十二省联考 2019」异或粽子

    题意 题目描述 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 $n$ 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 $1$ 到 $n$.第 $i$ 种馅儿具 ...

  2. [十二省联考2019]异或粽子——可持久化trie树+堆

    题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...

  3. 【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)

    [BZOJ5495][十二省联考2019]异或粽子(主席树,贪心) 题面 BZOJ 洛谷 题解 这不是送分题吗... 转异或前缀和,构建可持久化\(Trie\). 然后拿一个堆维护每次的最大值,每次如 ...

  4. [十二省联考2019]异或粽子 01trie

    [十二省联考2019]异或粽子 01trie 链接 luogu 思路 首先求前k大的(xo[i]^xo[j])(i<j). 考场上只想到01trie,不怎么会写可持久,就写了n个01trie,和 ...

  5. 『异或粽子 堆 可持久化trie』

    异或粽子 Description 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 n 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 1 到 n.第 i 种馅儿 ...

  6. 【简】题解 P5283 [十二省联考2019]异或粽子

    传送门:P5283 [十二省联考2019]异或粽子 题目大意: 给一个长度为n的数列,找到异或和为前k大的区间,并求出这些区间的异或和的代数和. QWQ: 考试时想到了前缀异或 想到了对每个数按二进制 ...

  7. 洛谷P5283 & LOJ3048:[十二省联考2019]异或粽子——题解

    https://www.luogu.org/problemnew/show/P5283 https://loj.ac/problem/3048 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子 ...

  8. Luogu P5283 / LOJ3048 【[十二省联考2019]异或粽子】

    联考Day1T1...一个考场上蠢了只想到\(O(n^2)\)复杂度的数据结构题 题目大意: 求前\(k\)大区间异或和的和 题目思路: 真的就是个sb数据结构题,可持久化01Trie能过(开O2). ...

  9. 「洛谷5283」「LOJ3048」「十二省联考2019」异或粽子【可持久化01trie+优先队列】

    题目链接 [洛谷传送门] [LOJ传送门] 题目大意 让你求区间异或和前\(k\)大的异或和的和. 正解 这道题目是Blue sky大佬教我做的(祝贺bluesky大佬进HA省A队) 我们做过某一些题 ...

随机推荐

  1. Linux基础安全配置(centos7)

    1.帐户口令的生存期不长于90天 sed -i.old 's#99999#90#g' /etc/login.defs egrep "90" /etc/login.defs 2.密码 ...

  2. 配置Internal Load balancer中VM的外网访问

    当在Azure中部署SQL VM时,处于安全考虑,不会配置VM的Public IP,会禁止外网的进出站访问,只允许从内部VNET,或者特定的内部IP访问.特别是当使用Azure Internal Lo ...

  3. 数据库已经存在表, django使用inspectdb反向生成model实体类

    1.通过inspectdb处理类,可以将现有数据库里的一个或者多个.全部数据库表生成Django model实体类 python manage.py inspectdb --database defa ...

  4. ubuntu16.04安装klee

    ubuntu16.04安装klee(基于llvm 3.8)教程 前言 查阅了很多资料,踩了不少的坑,总的来说,这个应该是比较完善的基于llvm3.8和ubuntu16.04的安装教程,至少我自己按照这 ...

  5. 【UE4 C++ 基础知识】<15> 智能指针 TSharedPtr、UniquePtr、TWeakPtr、TSharedRef

    基本概念 UE4 对 UObject 对象提供垃圾回收 UE4 对原生对象不提供垃圾回收,需要手动进行清理 方式 malloc / free new / delete new与malloc的区别在于, ...

  6. 六个好习惯让你的PCB设计更优(转)

    PCB layout工程师每天对着板子成千上万条走线,各种各样的封装,重复着拉线的工作,也许很多人会觉得是很枯燥无聊的工作内容.看似软件操作搬运工,其实设计人员在过程中要在各种设计规则之间做取舍,兼顾 ...

  7. linux安装后ping不通局域网其他主机的解决方式

    安装了linux后尝试进行机器间的相互通讯,发现自己虚拟机并不能查看ip地址,也不能够ping通任何一台局域网内的主机 上网查了一下发现是网卡并没有打开,需要进行如下配置 查看ls 一下/etc/sy ...

  8. linux中的分号 && ||

    几个符号的用法 ; 顺序地独立执行各条命令, 彼此之间不关心是否失败, 所有命令都会执行. && 顺序执行各条命令, 只有当前一个执行成功时候, 才执行后面的. & 放在启动参 ...

  9. si macro macro

    获取 buf 里的 symbol cbuf = BufListCount() msg(cbuf) ibuf = 0 while (ibuf < cbuf) { hbuf = BufListIte ...

  10. 【PowereDesigner】使用方法|mysql画图使用|不在跟新

    自己画E-R图时, 运行:Power Designer ..1 ..2 ..3 可以先放两个空的实体,然后,分别修改属性(鼠标右键,最后一项Properties),名称为:学生.课程. ..4 创建一 ...