[loj3048]异或粽子
先对其求出前缀异或和,然后$o(k)$次枚举,每次选择最大值,考虑如何维护
可以全局开一个堆,维护出每一个点的最大值的最大值,那么相当于要在一个点中删去一个点再找到最大值
将这些删去的点重新建成一颗trie树,与所有数构成的trie树减一下,就可以找到新的最大值了,再用堆维护即可
有一些细节:1.数值范围较大,需要开long long;2.由于无法判断位置关系,因此要取2k个并将答案除以2
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 500005
4 #define ll long long
5 set<pair<ll,int> >s;
6 int V,n,m,ch[N*70][2],sz[N*70];
7 ll ans,a[N];
8 void add(int k,ll x){
9 sz[k]++;
10 for(int i=31;i>=0;i--){
11 int p=((((1LL<<i)&x)>0));
12 if (!ch[k][p])ch[k][p]=++V;
13 k=ch[k][p];
14 sz[k]++;
15 }
16 }
17 ll query(int k1,int k2,ll x){
18 ll ans=0;
19 for(int i=31;i>=0;i--){
20 int p=(((1LL<<i)&x)==0);
21 if (sz[ch[k1][p]]==sz[ch[k2][p]])p^=1;
22 ans+=p*(1LL<<i);
23 k1=ch[k1][p];
24 k2=ch[k2][p];
25 }
26 return ans;
27 }
28 int main(){
29 scanf("%d%d",&n,&m);
30 for(int i=1;i<=n;i++){
31 scanf("%lld",&a[i]);
32 a[i]^=a[i-1];
33 }
34 V=n+2;
35 for(int i=0;i<=n;i++)add(1,a[i]);
36 for(int i=0;i<=n;i++)s.insert(make_pair(-(a[i]^query(1,i+2,a[i])),i));
37 m*=2;
38 for(int i=1;i<=m;i++){
39 ans-=(*s.begin()).first;
40 int k=(*s.begin()).second;
41 s.erase(s.begin());
42 add(k+2,query(1,k+2,a[k]));
43 s.insert(make_pair(-(a[k]^query(1,k+2,a[k])),k));
44 }
45 printf("%lld",ans/2);
46 }
[loj3048]异或粽子的更多相关文章
- LOJ3048 「十二省联考 2019」异或粽子
题意 题目描述 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 $n$ 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 $1$ 到 $n$.第 $i$ 种馅儿具 ...
- [十二省联考2019]异或粽子——可持久化trie树+堆
题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...
- 【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)
[BZOJ5495][十二省联考2019]异或粽子(主席树,贪心) 题面 BZOJ 洛谷 题解 这不是送分题吗... 转异或前缀和,构建可持久化\(Trie\). 然后拿一个堆维护每次的最大值,每次如 ...
- [十二省联考2019]异或粽子 01trie
[十二省联考2019]异或粽子 01trie 链接 luogu 思路 首先求前k大的(xo[i]^xo[j])(i<j). 考场上只想到01trie,不怎么会写可持久,就写了n个01trie,和 ...
- 『异或粽子 堆 可持久化trie』
异或粽子 Description 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 n 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 1 到 n.第 i 种馅儿 ...
- 【简】题解 P5283 [十二省联考2019]异或粽子
传送门:P5283 [十二省联考2019]异或粽子 题目大意: 给一个长度为n的数列,找到异或和为前k大的区间,并求出这些区间的异或和的代数和. QWQ: 考试时想到了前缀异或 想到了对每个数按二进制 ...
- 洛谷P5283 & LOJ3048:[十二省联考2019]异或粽子——题解
https://www.luogu.org/problemnew/show/P5283 https://loj.ac/problem/3048 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子 ...
- Luogu P5283 / LOJ3048 【[十二省联考2019]异或粽子】
联考Day1T1...一个考场上蠢了只想到\(O(n^2)\)复杂度的数据结构题 题目大意: 求前\(k\)大区间异或和的和 题目思路: 真的就是个sb数据结构题,可持久化01Trie能过(开O2). ...
- 「洛谷5283」「LOJ3048」「十二省联考2019」异或粽子【可持久化01trie+优先队列】
题目链接 [洛谷传送门] [LOJ传送门] 题目大意 让你求区间异或和前\(k\)大的异或和的和. 正解 这道题目是Blue sky大佬教我做的(祝贺bluesky大佬进HA省A队) 我们做过某一些题 ...
随机推荐
- Golang通脉之包的管理
在工程化的开发项目中,Go语言的源码复用是建立在包(package)基础之上的. 包(package)是多个Go源码的集合,是一种高级的代码复用方案,Go语言提供了很多内置包,如fmt.os.io等. ...
- Codeforces1573B
### 问题描述 - 给你两个数组,a数组里面是1 - 2n中的奇数任意顺序排列组成,b数组里面是1 - 2n中的奇数任意顺序排列组成. - 问你最少需要多少次操作能让a的字典序小于b. ### 思路 ...
- 第31篇-方法调用指令之invokevirtual
invokevirtual字节码指令的模板定义如下: def(Bytecodes::_invokevirtual , ubcp|disp|clvm|____, vtos, vtos, invokevi ...
- CSS 奇技淫巧 | 巧妙实现文字二次加粗再加边框
本文将通过一个实际的业务需求,讲解如何实现 极端场景下文字加粗加边框效果 文字多重边框的效果 需求背景 - 文字的二次加粗 今天遇到这样一个有意思的问题: 在文字展示的时候,利用了 font-weig ...
- 进阶区forgotg攻防世界
攻防世界进阶区--forgot 前言,这题中看不中用啊宝友!!! 1.查看保护 第一反应就是蛮简单的,32位. 2.获取信息(先运行程序看看) 装的可以,蛮多的东西. 但是就是中看不中用 3.ida ...
- iPhone SE切换颜色特效
Apple 网站的特效, iPhone SE 共有黑.白.红三种颜色,在卷动页面的时候会逐步替换,看起来效果非常时尚,在此供上代码学习. <!DOCTYPE html> <html& ...
- 【做题记录】CF1444A Division
CF1444A Division 题意: 给定 \(t\) 组询问,每组给两个数 \(p_i\) 和 \(q_i\) ,找出最大的整数 \(x_i\) ,要求 \(p_i\) 可被 \(x_i\) 整 ...
- 助你上手Vue3全家桶之VueX4教程
目录 1,前言 2,State 2.1,直接使用 2.2,结合computed 3,Getter 3.1,直接使用 3.2,结合computed 4,Mutation 4.1,直接使用 4.2,结合c ...
- 转:SYNOPSYS VCS Makefile文件编写与研究
SYNOPSYS VCS Makefile文件编写与研究 这个Makefile是synopsys提供的模板,看上去非常好用,你只要按部就班提供实际项目的参数就可以了.我们来看这个文件的头部说明:mak ...
- 30分钟通过Kong实现.NET网关
什么是Kong Openrestry是一个基于Nginx与Lua的高性能平台,内部有大量的Lua库.其中ngx_lua_moudule使开发人员能使用Lua脚本调用Nginx模块.Kong是一个Ope ...