TensorRT PoolingLayer
TensorRT PoolingLayer
IPoolingLayer在通道中实现池。支持的池类型有maximum、average和maximum average混合。
Layer Description: 2D pooling层描述:二维池
用2D滤波器计算a维张量a上的池,生成B维的张量B。B的维数取决于a的维数、窗口大小r、对称填充p和步长s,因此:
PoolingType::kMAX
Maximum over elements in window.
PoolingType::kAVERAGE
Average over elements in the window.
PoolingType::kMAX_AVERAGE_BLEND
Hybrid of maximum and average pooling. The results of the maximum pooling and the average pooling are combined with the blending factor as (1-blendFactor)*maximumPoolingResult + blendFactor*averagePoolingResult to yield the result. The blendFactor can be set to a value between 0 and 1.
默认情况下,平均池是在池窗口和填充的输入之间的重叠处执行的。如果exclusive参数设置为true,则在池窗口和未添加的输入之间的重叠区域执行平均池。
Layer Description: 3D pooling图层说明:三维池
使用3D过滤器计算a维度张量a上的池,以生成维度B的张量B。B的维度取决于a的维度、窗口大小r、对称填充p和跨距s,因此:
Where func is defined by one of the pooling types t:
PoolingType::kMAX
Maximum over elements in window.
PoolingType::kAVERAGE
Average over elements in the window.
PoolingType::kMAX_AVERAGE_BLEND
Hybrid of maximum and average pooling. The results of the maximum pooling and the average pooling are combined with the blending factor as (1-blendFactor)*maximumPoolingResult + blendFactor*averagePoolingResult to yield the result. The blendFactor can be set to a value between 0 and 1.
默认情况下,平均池是在池窗口和填充的输入之间的重叠处执行的。如果exclusive参数设置为true,则在池窗口和未添加的输入之间的重叠区域执行平均池。
条件和限制
2D或3D由输入核维数的数量决定。对于2D池,输入和输出张量应该有3个或更多维。对于3D池,输入和输出张量应具有4个或更多维度。
TensorRT PoolingLayer的更多相关文章
- TensorRT学习总结
TensorRT是什么 建议先看看这篇https://zhuanlan.zhihu.com/p/35657027 深度学习 训练 部署 平常自学深度学习的时候关注的更多是训练的部分,即得到一个模型.而 ...
- TensorRT&Sample&Python[yolov3_onnx]
本文是基于TensorRT 5.0.2基础上,关于其内部的yolov3_onnx例子的分析和介绍. 本例子展示一个完整的ONNX的pipline,在tensorrt 5.0的ONNX-TensorRT ...
- TensorRT&Sample&Python[uff_custom_plugin]
本文是基于TensorRT 5.0.2基础上,关于其内部的uff_custom_plugin例子的分析和介绍. 本例子展示如何使用cpp基于tensorrt python绑定和UFF解析器进行编写pl ...
- TensorRT&Sample&Python[fc_plugin_caffe_mnist]
本文是基于TensorRT 5.0.2基础上,关于其内部的fc_plugin_caffe_mnist例子的分析和介绍. 本例子相较于前面例子的不同在于,其还包含cpp代码,且此时依赖项还挺多.该例子展 ...
- TensorRT&Sample&Python[network_api_pytorch_mnist]
本文是基于TensorRT 5.0.2基础上,关于其内部的network_api_pytorch_mnist例子的分析和介绍. 本例子直接基于pytorch进行训练,然后直接导出权重值为字典,此时并未 ...
- TensorRT&Sample&Python[end_to_end_tensorflow_mnist]
本文是基于TensorRT 5.0.2基础上,关于其内部的end_to_end_tensorflow_mnist例子的分析和介绍. 1 引言 假设当前路径为: TensorRT-5.0.2.6/sam ...
- TensorRT&Sample&Python[introductory_parser_samples]
本文是基于TensorRT 5.0.2基础上,关于其内部的introductory_parser_samples例子的分析和介绍. 1 引言 假设当前路径为: TensorRT-5.0.2.6/sam ...
- 模型加速[tensorflow&tensorrt]
在tensorflow1.8之后的版本中,tensorflow.contrib部分都有tensorrt的组件,该组件存在的意义在于,你可以读取pb文件,并调用tensorrt的方法进行subgraph ...
- TensorRT层和每个层支持的精度模式
下表列出了TensorRT层和每个层支持的精确模式.它还列出了该层在深度学习加速器(DLA)上运行的能力.有关附加约束的更多信息,请参见 DLA Supported Layershttps://doc ...
随机推荐
- Python 第二章-列表和元组
第二章-列表和元组 2.0 在Python中,最基本的数据结构是序列(sequence).序列中的每个元素被分配一个序列号-即元素的位置, 也称为索引.第一个索引是0,第二个是1,以此类推. ...
- 初入MongoDB
初入MongoDB 业务需求,需要用到MongoDB.向来一直是mysql数据库的思想,一下转换为nosql还是很不适应.经过一个月的开发,写一下自己的感触.本文会对应mysql数据库进行说明. 数据 ...
- 使用FastDFS进行文件管理
使用FastDFS进行文件管理 FastDFS简介 FastDFS: FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括:文件存储.文件同步.文件访问(文件上传.文件下载)等, ...
- 什么是redis的缓存雪崩, 穿透, 击穿?
目前的互联网系统没有几个不使用缓存的, 但是只要使用缓存的话就会面临这几个问题, 如使用redis缓存技术, 可能会遇到缓存的雪崩, 穿透, 以及击穿. 首先来看一个简单的正常缓存流程: 如用户访问J ...
- char值不能直接用作数组下标
#include <stdio.h> //用 char 的值作为数组下标(例如,统计字符串中每个字符出现的次数),要考虑到 //char 可能是负数.有的人考虑到了,先强制转型为 unsi ...
- 2020BUAA 软工-结对作业
结对作业 项目 内容 北航2020软工 班级博客 作业要求 具体要求 1.在文章开头给出教学班级和可克隆的 GitHub 项目地址(例子如下).(1') 教学班级 005 项目地址 GitHub 2. ...
- MSSQL·查询T-SQL语句执行时间的三种方法
阅文时长 | 0.23分钟 字数统计 | 420.8字符 主要内容 | 1.引言&背景 2.自定义时间变量求差法 3.MSSQL内置方法 4.MSSQL选项开启时间统计 5.声明与参考资料 『 ...
- Build 2021 :正式发布.NET 6 Preview4
微软在不断推进.NET 6的可用性,昨晚的Build 2021大会上发布了Preview4, 这是一个很大的版本更新,带来大量的功能,以及接近最终的产品交付质量,不过,这并不意味着可以在生产环境使用了 ...
- Python实现TCP通讯
Environment Client:Windows Server:KaLi Linux(VM_virtul) Network:Same LAN Client #!/usr/bin/python3 # ...
- windows怎么访问linux的samba共享目录
windows怎么访问linux的samba共享目录 听语音 原创 | 浏览:6976 | 更新:2018-07-31 13:20 | 标签:LINUX WINDOWS 1 2 3 4 5 6 7 分 ...