题面

首先这 \(n\) 个数是互相独立的,所以我们不需要统一的去考虑,只需要考虑其中一个数即可。

我们以 \(k=5\) 的情况举例。

我设 \(f_i\) 为最后一行只填前 \(i\) 个点的情况数, \(g_i\) 为 \(k=i\) 时总共的情况数。

显然, \(f_0\) 就是 \(g_{k-1}\) ,在这里就是 \(g_4\) 。



然后 \(f_1\) 其实就是图中黑色部分一定填,白色一定不填,红色部分可选的种类数。进一步观察,这个红色部分其实就是 \(g_3\) 。





再进一步由图可以得到, \(f_2=g_2,f_3=g_1\) 。

再往下, \(f_4\) 和 \(f_5\) 都没得选了,所以 \(f_4=f_5=1\) 。

为了下面讲述方便,我们设 \(f_4=g_0=1\) 。

那么我们已经得到了 \(g_5=\sum^5_{i=1}f_i\) ,那么我们可以推广到其他数,可知 \(g_k=\sum^k_{i=1}f_i\)

再进一步观察,当 \(k=5\) 时, \(f_0=g_4,f_1=g_3,f_2=g_2,f_3=g_1,f_4=g_0\) ,

所以 \(g_5=\sum^5_{i=1}f_i=\sum^4_{i=1}g_{4-i}+f_5=\sum^4_{i=1}g_i+1\) 。

推广到其他数,可知 \(g_k=\sum^{k-1}_{i=1}g_i+1\)

那么我们可以根据 \(g_0=1\) 推出 \(g_1=2,g_2=4,g_3=8\) 。

观察规律,可以发现 \(g_i=2^i\) 。

如何证明呢?我们使用数学归纳法。

首先当 \(i=0\) 时,\(g_0=1=2^0\) ,结论成立。

再假设 \(i=k\) 时,结论已成立,那么 \(g_{k+1}=\sum^{k}_{i=1}g_i+1=\sum^{k-1}_{i=1}g_i+1+g_k\) ,而 \(\sum^{k-1}_{i=1}g_i+1=g_k\) ,所以 \(g_{k+1}=\sum^{k-1}_{i=1}g_i+1+g_k=2\times g_k=2\times 2^k=2^{k+1}\) ,所以 \(i=k+1\) 时仍然成立。

所以我们就证明出了 \(g_i=2^i\) 。

回到最开始。我们有 \(n\) 个数,每个数有 \(g_k=2^k\) 种选择,那么根据乘法原理,总计的选择数就是 \(2^{nk}\) 。用快速幂算一下即可。代码就不贴了。

洛谷P6075题解的更多相关文章

  1. [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码

    [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...

  2. 洛谷P5759题解

    本文摘自本人洛谷博客,原文章地址:https://www.luogu.com.cn/blog/cjtb666anran/solution-p5759 \[这道题重在理解题意 \] 选手编号依次为: \ ...

  3. 关于三目运算符与if语句的效率与洛谷P2704题解

    题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...

  4. c++并查集配合STL MAP的实现(洛谷P2814题解)

    不会并查集的话请将此文与我以前写的并查集一同食用. 原题来自洛谷 原题 文字稿在此: 题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. ...

  5. 洛谷P2607题解

    想要深入学习树形DP,请点击我的博客. 本题的DP模型同 P1352 没有上司的舞会.本题的难点在于如何把基环树DP转化为普通的树上DP. 考虑断边和换根.先找到其中的一个环,在上面随意取两个点, 断 ...

  6. 洛谷 P6075 [JSOI2015]子集选取

    链接:P6075 前言: 虽然其他大佬们的走分界线的方法比我巧妙多了,但还是提供一种思路. 题意: %&¥--@#直接看题面理解罢. 分析过程: 看到这样的题面我脑里第一反应就是DP,但是看到 ...

  7. 【洛谷】题解 P1056 【排座椅】

    题目链接 因为题目说输入保证会交头接耳的同学前后相邻或者左右相邻,所以一对同学要分开有且只有一条唯一的通道才能把他们分开. 于是可以吧这条通道累加到一个数组里面.应为题目要求纵列的通道和横列的通道条数 ...

  8. 洛谷P3572题解

    这道题实在是一道 毒瘤 题,太坑爹了.那个写 \(deque\) 的题解亲测只有80分,原因 不言而明 ,这道题居然 丧心病狂 到 卡STL . 好了,不吐槽了,进入正题 题目分析: 这是一道十分 简 ...

  9. [洛谷P1972][题解][SDOI2009]HH的项链

    别碰我! 自己还是太蒟了…… 看了好久,最后抄参考题解打出来的…… 前面的可能影响后面的,所以按照询问右端点排序 这时候维护一个前缀和数组就可以了, 那么问题又来了,去重? 可以这样,从前往后枚举,如 ...

随机推荐

  1. Java 数组结构

    数组是最常见的一种数据结构,是相同类型的.用一个标识符封装到一起的基本类型数据序列或对象序列.可以用一个统一的数组名和下标来唯一确定数组中的元素.实质上数组是一个简单的线性序列,因此数组访问起来很快. ...

  2. hive表导出到mysql报错

    Exception in thread "main" java.lang.NoClassDefFoundError: org/json/JSONObject hadoop@hado ...

  3. 使用filter过滤GZIP压缩(二)

    在代码之前,讲一下用filter实现GZIP压缩的原理: 因为GZIP压缩之后,是从服务器端传输到浏览器端,从servlet到浏览器(从jsp到浏览器),其实是response带回内容,所以我们要在f ...

  4. mybaits源码分析(一)

    一.源码下载 1.手动编译源码 为了方便在看源码的过程中能够方便的添加注释,可以从官网下载源码编译生成对应的Jar包,然后上传到本地maven仓库,再引用这个Jar. 首先需要编译打包parent项目 ...

  5. Spring Boot集成Redis集群(Cluster模式)

    目录 集成jedis 引入依赖 配置绑定 注册 获取redis客户端 使用 验证 集成spring-data-redis 引入依赖 配置绑定 注册 获取redis客户端 使用 验证 异常处理 同样的, ...

  6. C++类和对象笔记

    笔记参考C++视频课程 黑马C++ C++ 面向对象的三大特性:封装.继承.多态 目录 目录 目录 一.封装 1.1 封装的意义-属性和行为 1.2 struct和class的区别 1.3 成员属性设 ...

  7. js与jquery获取input输入框中的值

    如何用javascript获取input输入框中的值,js/jq通过name.id.class获取input输入框中的value 先准备一段 HTML 一.jquery获取input文本框中的值 通过 ...

  8. 登录用户出现‘’-bash-4.2$‘’的问题解决

    Linux系统切换用户时如显示的是-bash-4.2# 而不是user@主机名 + 路径的显示方式,以往一直用的脚本也不能执行起来: 原因是在用useradd添加普通用户时,有时会丢失家目录下的环境变 ...

  9. CPU内部结构域寄存器

    CPU内部结构域寄存器   64位和32位系统区别: 寄存器是CPU内部最基本的存储单元. CPU对外是通过总线(地址.控制.数据)来和外部设备交互的,总线的宽度是8位,同时CPU的寄存器也是8位,那 ...

  10. java代码覆盖实战

    Jacoco原理 代码插桩 On-the-fly插桩: JVM中通过-javaagent参数指定特定的jar文件启动Instrumentation的代理程序,代理程序在通过Class Loader装载 ...