正题

题目链接:https://www.luogu.com.cn/problem/P1251


题目大意

\(N\)天,第\(i\)天需要\(a_i\)个餐巾。

每个餐巾价格为\(p\),使用完后有两种清洗方法

  1. 清洗\(m\)天,费用为\(f\)
  2. 清洗\(n\)天,费用为\(s\)

求满足所有需求的最小花费

\(1\leq N\leq 2000,1\leq a_i\leq 10^7,1\leq p,f,s\leq 10^4\)


解题思路

网络流\(24\)题里的题目。而且显然是费用流

毛巾使用过后还可以再使用,我们有两种方法来限制这个条件

  1. 不使用最大流限制,那么我们每次使用毛巾可以视为流过一条流量为\(-inf\)的边,这样为了最小费用显然会满足所有条件。最后将流过的\(-inf\)的权值加回去就好了
  2. 使用最大流来限制。可以发现因为毛巾的条件是必须满足的,所以我们可以默认每次使用完后一定会剩下\(a_i\)个毛巾,所以我们直接让流量表示毛巾,然后每次多产生回\(a_i\)流量就好了

第二种好写一点,这里用的也是第二种


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const ll N=4100,inf=1e18;
struct node{
ll to,next,w,c;
}a[N<<4];
ll n,A,B,F,fa,fb,tot,ans,s,t;
ll ls[N],f[N],mf[N],pre[N],w[N];
bool v[N];queue<int> q;
void addl(ll x,ll y,ll w,ll c){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;a[tot].c=c;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;a[tot].c=-c;
return;
}
bool SPFA(){
memset(f,0x3f,sizeof(f));
f[s]=0;mf[s]=inf;q.push(s);v[s]=1;
while(!q.empty()){
ll x=q.front();q.pop();v[x]=0;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(a[i].w&&f[x]+a[i].c<f[y]){
f[y]=f[x]+a[i].c;pre[y]=i;
mf[y]=min(mf[x],a[i].w);
if(!v[y])v[y]=1,q.push(y);
}
}
}
return f[t]<inf;
}
void Updata(){
ll x=t;ans+=mf[x]*f[x];
while(x!=s){
a[pre[x]].w-=mf[t];
a[pre[x]^1].w+=mf[t];
x=a[pre[x]^1].to;
}
return;
}
signed main()
{
scanf("%lld",&n);
s=2*n+1;t=s+1;tot=1;
scanf("%lld%lld%lld%lld%lld",&A,&B,&F,&fa,&fb);
for(ll i=1;i<=n;i++)scanf("%lld",&w[i]);
for(ll i=1;i<=n;i++){
addl(s,i,inf,F);
addl(i,t,w[i],0);
addl(s,i+n,w[i],0);
if(i+A+1<=n)addl(i+n,i+A+1,inf,fa);
if(i+B+1<=n)addl(i+n,i+B+1,inf,fb);
if(i<n)addl(i,i+1,inf,0);
}
while(SPFA())
Updata();
printf("%lld\n",ans);
return 0;
}

P1251-餐巾计划问题【费用流】的更多相关文章

  1. P1251 餐巾计划问题 费用流

    https://www.luogu.org/problemnew/show/P1251 题意 有一家酒店,酒店每天需要ri张桌布,桌布可以现买,p元.可以通过快洗店,等m天,f元.可以通过慢洗店,等n ...

  2. LuoguP1251 餐巾计划问题(费用流)

    题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri​块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...

  3. 洛谷.1251.餐巾计划问题(费用流SPFA)

    题目链接 /* 每一天的餐巾需求相当于必须遍历某些点若干次 设q[i]为Dayi需求量 (x,y)表示边x容y费 将每个点i拆成i,i',由i'->T连(q[i],0)的边,表示求最大流的话一定 ...

  4. 洛谷 P1251 餐巾计划问题(线性规划网络优化)【费用流】

    (题外话:心塞...大部分时间都在debug,拆点忘记加N,总边数算错,数据类型标错,字母写错......) 题目链接:https://www.luogu.org/problemnew/show/P1 ...

  5. P1251 餐巾计划问题

    P1251 餐巾计划问题 题目描述 一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同.假设第 iii 天需要 rir_iri​块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费 ...

  6. P1251 餐巾计划问题 网络流

    P1251 餐巾计划问题 #include <bits/stdc++.h> using namespace std; typedef long long ll; , inf = 0x3f3 ...

  7. 网络流之最小费用最大流 P1251 餐巾计划问题

    题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri​块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...

  8. 【Luogu】P1251餐巾计划(上下界费用流)

    题目链接 学了一下上下界费用流,似乎很nb.但是我说得不好,所以这里给出博客链接. 某dalao的博客 然后这道题的解法就是先用上下界费用流的建图方式连早上和晚上之间的那条边,保证当天一定会有r条或以 ...

  9. 洛谷P1251 餐巾计划问题(最小费用最大流)

    题意 一家餐厅,第$i$天需要$r_i$块餐巾,每天获取餐巾有三种途径 1.以$p$的费用买 2.以$f$的费用送到快洗部,并在$m$天后取出 3.以$s$的费用送到慢洗部,并在$n$天后取出 问满足 ...

  10. LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图

    #6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

随机推荐

  1. springmvc学习日志四

    一.回顾 1.文件上传 1.1引入fileupload的jar包 1.2在springmvc的配置文件中引入CommonsMutilpartResolver文件上传解析器 1.3在控制层在写入代码 2 ...

  2. 再也不用担心了,微软官方系统(win10为例)U盘安装教程

    参考文章地址 使用微软官方工具安装纯净版操作系统. 一.准备工作 检查电脑规格是否支持安装(主要看看系统配置是否满足系统运行的最低要求) 一台联网电脑(不一定非是要装系统的那台): 一个≥8G 空间的 ...

  3. ubuntu18.04 开机启动/停止服务

    ubuntu18.04 开机启动/停止服务 一.删除一个服务 如果要删除一个服务,使用uodate-rc.d(参数-f是强制删除符号链接) update-rc.d -f apache2 remove ...

  4. mzy,struts学习(一)

    大家都在讲struts已经过时了,现在都是前后台分离,没有必要去学一个淘汰的框架,但是怎么讲呢?我觉得,struts能够流行那么多年,肯定有它的原因,肯定有很多优秀和好的地方,有一个指导过我的人给我讲 ...

  5. JDBC中级篇(MYSQL)——处理大文本(CLOB)

    注意:其中的JdbcUtil是我自定义的连接工具类:代码例子链接: package b_blob_clob; import java.io.FileNotFoundException; import ...

  6. Servlet监听器详解及举例

    监听器就是一个实现特定接口的普通java程序,这个程序专门用于监听另一个java对象的方法调用或属性改变,当被监听对象发生上述事件后,监听器某个方法将立即被执行. 监听器原理 监听原理 1.存在事件源 ...

  7. Java创建线程池的方法

    Executors创建四种线程池: CachedThreadPool:可缓存的线程池,该线程池中没有核心线程,非核心线程的数量为Integer.max_value,当有需要时创建线程来执行任务,没有需 ...

  8. 20210713考试-2021noip13

    这位巨佬的博客还是比我好多了 T1 工业题 考场: 暴力挺香的,不想正解了. 题解: $f(i,j)$ 只会得到 $f(i-1,j)$ 和 $f(i,j-1)$ 的贡献.每向右一步乘 $a$ ,向下一 ...

  9. 比培训机构还详细的 Python 学习路线,你信吗 0^0

    前言 这其实是将自己写的文章进行一个总结分类,并不代表最佳学习路线 会不断更新这篇文章...没链接的文章正在编写ing...会不会哪天我的这个目录就出现在培训机构的目录上了... 目前实战比较少(要是 ...

  10. POJ3625Building Roads

    Building Roads Description Farmer John had just acquired several new farms! He wants to connect the ...