正题

题目链接:https://www.luogu.com.cn/problem/P1251


题目大意

\(N\)天,第\(i\)天需要\(a_i\)个餐巾。

每个餐巾价格为\(p\),使用完后有两种清洗方法

  1. 清洗\(m\)天,费用为\(f\)
  2. 清洗\(n\)天,费用为\(s\)

求满足所有需求的最小花费

\(1\leq N\leq 2000,1\leq a_i\leq 10^7,1\leq p,f,s\leq 10^4\)


解题思路

网络流\(24\)题里的题目。而且显然是费用流

毛巾使用过后还可以再使用,我们有两种方法来限制这个条件

  1. 不使用最大流限制,那么我们每次使用毛巾可以视为流过一条流量为\(-inf\)的边,这样为了最小费用显然会满足所有条件。最后将流过的\(-inf\)的权值加回去就好了
  2. 使用最大流来限制。可以发现因为毛巾的条件是必须满足的,所以我们可以默认每次使用完后一定会剩下\(a_i\)个毛巾,所以我们直接让流量表示毛巾,然后每次多产生回\(a_i\)流量就好了

第二种好写一点,这里用的也是第二种


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const ll N=4100,inf=1e18;
struct node{
ll to,next,w,c;
}a[N<<4];
ll n,A,B,F,fa,fb,tot,ans,s,t;
ll ls[N],f[N],mf[N],pre[N],w[N];
bool v[N];queue<int> q;
void addl(ll x,ll y,ll w,ll c){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;a[tot].c=c;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;a[tot].c=-c;
return;
}
bool SPFA(){
memset(f,0x3f,sizeof(f));
f[s]=0;mf[s]=inf;q.push(s);v[s]=1;
while(!q.empty()){
ll x=q.front();q.pop();v[x]=0;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(a[i].w&&f[x]+a[i].c<f[y]){
f[y]=f[x]+a[i].c;pre[y]=i;
mf[y]=min(mf[x],a[i].w);
if(!v[y])v[y]=1,q.push(y);
}
}
}
return f[t]<inf;
}
void Updata(){
ll x=t;ans+=mf[x]*f[x];
while(x!=s){
a[pre[x]].w-=mf[t];
a[pre[x]^1].w+=mf[t];
x=a[pre[x]^1].to;
}
return;
}
signed main()
{
scanf("%lld",&n);
s=2*n+1;t=s+1;tot=1;
scanf("%lld%lld%lld%lld%lld",&A,&B,&F,&fa,&fb);
for(ll i=1;i<=n;i++)scanf("%lld",&w[i]);
for(ll i=1;i<=n;i++){
addl(s,i,inf,F);
addl(i,t,w[i],0);
addl(s,i+n,w[i],0);
if(i+A+1<=n)addl(i+n,i+A+1,inf,fa);
if(i+B+1<=n)addl(i+n,i+B+1,inf,fb);
if(i<n)addl(i,i+1,inf,0);
}
while(SPFA())
Updata();
printf("%lld\n",ans);
return 0;
}

P1251-餐巾计划问题【费用流】的更多相关文章

  1. P1251 餐巾计划问题 费用流

    https://www.luogu.org/problemnew/show/P1251 题意 有一家酒店,酒店每天需要ri张桌布,桌布可以现买,p元.可以通过快洗店,等m天,f元.可以通过慢洗店,等n ...

  2. LuoguP1251 餐巾计划问题(费用流)

    题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri​块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...

  3. 洛谷.1251.餐巾计划问题(费用流SPFA)

    题目链接 /* 每一天的餐巾需求相当于必须遍历某些点若干次 设q[i]为Dayi需求量 (x,y)表示边x容y费 将每个点i拆成i,i',由i'->T连(q[i],0)的边,表示求最大流的话一定 ...

  4. 洛谷 P1251 餐巾计划问题(线性规划网络优化)【费用流】

    (题外话:心塞...大部分时间都在debug,拆点忘记加N,总边数算错,数据类型标错,字母写错......) 题目链接:https://www.luogu.org/problemnew/show/P1 ...

  5. P1251 餐巾计划问题

    P1251 餐巾计划问题 题目描述 一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同.假设第 iii 天需要 rir_iri​块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费 ...

  6. P1251 餐巾计划问题 网络流

    P1251 餐巾计划问题 #include <bits/stdc++.h> using namespace std; typedef long long ll; , inf = 0x3f3 ...

  7. 网络流之最小费用最大流 P1251 餐巾计划问题

    题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri​块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...

  8. 【Luogu】P1251餐巾计划(上下界费用流)

    题目链接 学了一下上下界费用流,似乎很nb.但是我说得不好,所以这里给出博客链接. 某dalao的博客 然后这道题的解法就是先用上下界费用流的建图方式连早上和晚上之间的那条边,保证当天一定会有r条或以 ...

  9. 洛谷P1251 餐巾计划问题(最小费用最大流)

    题意 一家餐厅,第$i$天需要$r_i$块餐巾,每天获取餐巾有三种途径 1.以$p$的费用买 2.以$f$的费用送到快洗部,并在$m$天后取出 3.以$s$的费用送到慢洗部,并在$n$天后取出 问满足 ...

  10. LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图

    #6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

随机推荐

  1. Java常用类之时间类

    JDK8之前日期时间API 1. java.lang.System类 2. java.util.Date类 3. java.text.SimpleDateFormat类 4. java.util.Ca ...

  2. C++ CLI简介(什么是C++ CLI)

    要知道C++/CLI是什么,首先知道什么是CLI. 一.CLI简介 CLI:(Common Language Infrastructure,通用语言框架)提供了一套可执行代码和它所运行需要的虚拟执行环 ...

  3. css - 全屏

    css - 全屏 heml和body元素的宽高 html与body都是块元素,但它俩比较特殊,宽高由如下定义: 1.默认的宽度=浏览器可视区域的宽度(不包含滚动条),可设置大于可视区域的宽度,但不会计 ...

  4. MySQL 实例空间使用率过高的原因和解决方法

    用户在使用 MySQL 实例时,会遇到空间使用告警甚至超过实例限额被锁定的情况.在 RDS 控制台的实例基本信息中,即会出现如下信息: 本文将介绍造成空间使用率过高的常见原因及其相应的解决方法.对于M ...

  5. Redis-技术专区-帮从底层彻底吃透RDB技术原理

    每日一句 低头是一种能力,它不是自卑,也不是怯弱,它是清醒中的嬗变.有时,稍微低一下头,或者我们的人生路会更精彩. 前提概要 Redis是一个的键-值(K-V)对的内存数据库服务,通常包含了任意个非空 ...

  6. IO流学习笔记(一)之FileWriter与FileReader

    IO流用来处理设备之间的数据传输 Java对数据的操作是通过流的方式 Java用于操作流的对象都在IO包中 流按照操作数据分为两种:字节流和字符流 流按流向分为:输入流和输出流 输入流和输出流是相对于 ...

  7. golang channel原理

    channel介绍 channel一个类型管道,通过它可以在goroutine之间发送和接收消息.它是Golang在语言层面提供的goroutine间的通信方式. 众所周知,Go依赖于称为CSP(Co ...

  8. element-ui 用 el-checkbox-group 做权限管理

    template <el-checkbox-group v-model="menu_ide" v-for="(item,index) in menu_idss&qu ...

  9. 剑指 Offer 33. 二叉搜索树的后序遍历序列

    剑指 Offer 33. 二叉搜索树的后序遍历序列 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果.如果是则返回 true,否则返回 false.假设输入的数组的任意两个数字都互不相同. ...

  10. Django的form组件——自定义校验函数

    from django.shortcuts import render,HttpResponse from django import forms from django.core.exception ...