先让我们探索一下两条非树边以及树边能构成简单环的条件是什么,你会发现将第一条非树边的两个点在树上形成的链记为 \(W_1\),另一条即为 \(W_2\),那么当且仅当 \(W_1, W_2\) 有交时才能满足条件。因为当 \(W_1, W_2\) 没交时,那么中间一定会经过一些树边不被这两条链覆盖,但因为点只能走一次因此我们就不能回来了,所以这种情况下是不行的;而当 \(W_1, W_2\) 有交时很容易就可以构造出一条合法的简单环。

于是现在问题转化成统计有多少对链 \(W_1, W_2\) 满足其有交。这种链交问题我们一般拆成左右两条直上直下的链,这样可以减少讨论。令 \(W_1, W_2\) 中链顶更高的为 \(W_1\),不难发现两条链有交当且仅当 \(W_1\) 会穿过 \(W_2\) 的链顶与其链上儿子中间组成的这条边,因此对于每条链 \(W_i\) 我们在其链顶与其在链上的儿子组成的边上权值 \(+1\),那么和每条链交的链的数量就是其在链上的边上的权值之和,这个我们可以直接倍增计算得出,这部分复杂度 \(O(n \log n)\)。于此同时你会发现,如果两条链链顶不同,这样只会计算一次链交,如果两条链顶相同,这样会计算两次,因此我们还需要将这部分多余的减去。

不难发现我们将所有链挂在链顶上,那么链顶相同且有交的链当且仅当是都经过了这个链顶的一个儿子的这样一对链。于是我们把经过每个儿子的链的数量统计出来,令第 \(i\) 个儿子的数量为 \(c_i\),则多算的链数应该是:\(\dbinom{c_i}{2}\),减去即可,这部分复杂度 \(O(n)\)。

但是回过头来会发现一个问题,有没有可能两条链在左边边交一次右边边也交一次呢,这样就记重了。事实上是有的,当且仅当两条链的 \(LCA\) 相同并且两条链都相同地经过 \(LCA\) 的两个儿子。这部分记重我们只需要将所有链一样地挂在 \(LCA\) 上每次用 \(map\) 统计经过两个儿子的链的数量,令其中一种的数量为 \(x\),则多算的部分应该是:\(\dbinom{x}{2}\),减去即可。这部分复杂度 \(O(n \log n)\)。

一些坑点

  • 就算原来的链也是直上直下的也会计算重复,也需要减去算重的部分;于此同时需要注意第二次去重时不要统计经过其自身的和一个儿子的重复部分。
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define rep(i, l, r) for(int i = l; i <= r; ++i)
#define dep(i, l, r) for(int i = r; i >= l; --i)
#define Next(i, u) for(int i = h[u]; i; i = e[i].next)
const int N = 200000 + 5;
const int K = 20 + 5;
struct edge{
int v, next;
}e[N << 1];
struct node{
int u, v;
}a[N << 1];
long long ans;
int n, m, u, v, tot, cnt, Lca, h[N], dep[N], tmp[N], f[N][K], dp[N][K];
vector <node> G[N];
map <int, int> M[N];
int read(){
char c; int x = 0, f = 1;
c = getchar();
while(c > '9' || c < '0'){ if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
void add(int u, int v){
e[++tot].v = v, e[tot].next = h[u], h[u] = tot;
e[++tot].v = u, e[tot].next = h[v], h[v] = tot;
}
void dfs(int u, int fa){
f[u][0] = fa, dep[u] = dep[fa] + 1;
Next(i, u) if(e[i].v != fa) dfs(e[i].v, u);
}
int LCA(int x, int y){
if(dep[x] < dep[y]) swap(x, y);
dep(i, 0, 20) if(dep[f[x][i]] >= dep[y]) x = f[x][i];
if(x == y) return x;
dep(i, 0, 20) if(f[x][i] != f[y][i]) x = f[x][i], y = f[y][i];
return f[x][0];
}
int find(int x, int y){
dep(i, 0, 20) if(dep[f[x][i]] > dep[y]) x = f[x][i];
return x;
}
int calc(int x, int y){
int ans = 0;
dep(i, 0, 20) if(dep[f[x][i]] >= dep[y]) ans += dp[x][i], x = f[x][i];
return ans;
}
signed main(){
n = read(), m = read();
rep(i, 1, n - 1) u = read(), v = read(), add(u, v);
dfs(1, 0);
rep(j, 1, 20) rep(i, 1, n) f[i][j] = f[f[i][j - 1]][j - 1];
rep(i, n, m){
u = read(), v = read(), Lca = LCA(u, v); if(dep[u] < dep[v]) swap(u, v);
G[Lca].push_back((node){find(u, Lca), find(v, Lca)});
if(v != Lca) a[++cnt] = (node){u, Lca}, a[++cnt] = (node){v, Lca};
else a[++cnt] = (node){u, v};
}
rep(i, 1, n){
if(!G[i].size()) continue;
for(int j = 0; j < G[i].size(); ++j){
if(G[i][j].u > G[i][j].v) swap(G[i][j].u, G[i][j].v);
if(G[i][j].u != i && G[i][j].v != i) ans -= M[G[i][j].u][G[i][j].v];
++tmp[G[i][j].u], ++tmp[G[i][j].v], ++M[G[i][j].u][G[i][j].v];
}
Next(j, i) ans -= 1ll * tmp[e[j].v] * (tmp[e[j].v] - 1) / 2;
for(int j = 0; j < G[i].size(); ++j) --tmp[G[i][j].u], --tmp[G[i][j].v], --M[G[i][j].u][G[i][j].v];
}
rep(i, 1, cnt) ++dp[find(a[i].u, a[i].v)][0];
rep(j, 1, 20) rep(i, 1, n) dp[i][j] = dp[i][j - 1] + dp[f[i][j - 1]][j - 1];
rep(i, 1, cnt) ans += calc(a[i].u, a[i].v) - 1;
printf("%lld", ans);
return 0;
}

值得一提的时其实在第一次计算时不需要倍增去统计,我们直接利用差分的技巧统计链底到根的和减去链顶到根的和即可。

[USACO19JAN]Exercise Route P的更多相关文章

  1. [USACO19JAN]Exercise Route

    题目 这题的数据有点水,暴力合并\(set\)好像过了 分析一下这个题的性质,发现我们一条非树边就会形成一个环,而我们要求选择两个非树边,就会形成两个环,要求不走重复的点,就是说我们需要走一个大环,且 ...

  2. [USACO18DEC]The Cow Gathering P

    首先可以思考一下每次能删去的点有什么性质. 不难发现,每次能删去的点都是入度恰好为 \(1\) 的那些点(包括 \(a_i \rightarrow b_i\) 的有向边). 换句话说,每次能删去的点既 ...

  3. Application Request Route实现IIS Server Farms集群负载详解

    序言 随着公司业务的发展,后台业务就变的越来越多,然而服务器的故障又像月经一样,时不时的汹涌而至,让我们防不胜防.那么后台的高可用,以及服务器的处理能力就要做一个横向扩展的方案,以使后台业务持续的稳定 ...

  4. .net core 源码解析-mvc route的注册,激活,调用流程(三)

    .net core mvc route的注册,激活,调用流程 mvc的入口是route,当前请求的url匹配到合适的route之后,mvc根据route所指定的controller和action激活c ...

  5. angular路由——ui.route

    angular路由 使用案例 <!DOCTYPE html> <html lang="en"> <head> <meta charset= ...

  6. 如何在ARM中创建Express Route

    很早之前就想试试Azure的express route,但是一直没有找到合适的机会,正好有个客户需要上express route,所以最近先自己研究研究,防止在做poc的时候耗费更多时间,本次场景我们 ...

  7. Python flask @app.route

    转载自 http://python.jobbole.com/80956/ 下面是Flask主页给我们的第一个例子,我们现在就由它入手,深入理解“@app.route()”是如何工作的.         ...

  8. MIT 6.828 JOS学习笔记12 Exercise 1.9

    Lab 1中Exercise 9的解答报告 Exercise 1.9: 判断一下操作系统内核是从哪条指令开始初始化它的堆栈空间的,以及这个堆栈坐落在内存的哪个地方?内核是如何给它的堆栈保留一块内存空间 ...

  9. MIT 6.828 JOS学习笔记13 Exercise 1.10

    Lab 1 Exercise 10 为了能够更好的了解在x86上的C程序调用过程的细节,我们首先找到在obj/kern/kern.asm中test_backtrace子程序的地址, 设置断点,并且探讨 ...

随机推荐

  1. 团队编程二——web应用之人事管理系统

    该项目是B-S模式的web应用,以下是团队各成员的Coding链接: ------Aaric---https://coding.net/u/Aaric/p/Personnel_management_s ...

  2. 初识python: 自定义函数

    什么是函数? 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段.函数能提高应用的模块性,和代码的重复利用率. 函数的定义方法: def test(x): '函数定义方法' x+=1 r ...

  3. 责任链模式(python)

    rom abc import ABCMeta, abstractmethod class Handler(metaclass=ABCMeta): @abstractmethod def handle_ ...

  4. Java 单引号 与 双引号 区别

    双引号,用来引用字符串, 单引号用来表示单个字符.

  5. 使用 淘宝 接口,根据公网ip 获取地理信息

    1.  源码,点击查看 1 import java.io.BufferedReader; 2 import java.io.IOException; 3 import java.io.InputStr ...

  6. java中的spi

    JAVA中的SPI机制 1.SPI简介 SPI机制(Service Provider Interface)其实源自服务提供者框架(Service Provider Framework),是一种将服务接 ...

  7. Unity3D开发入门教程(四)——用Lua实现组件

    五邑隐侠,本名关健昌,12年游戏生涯. 本教程以 Unity 3D + VS Code + C# + tolua 为例. 一.Lua组件基类 1.在 Assets/Lua 目录下新建com目录用于存放 ...

  8. leetcode 1288. 删除被覆盖区间

    问题描述 给你一个区间列表,请你删除列表中被其他区间所覆盖的区间. 只有当 c <= a 且 b <= d 时,我们才认为区间 [a,b) 被区间 [c,d) 覆盖. 在完成所有删除操作后 ...

  9. 龙芯 3A4000 安装 Debian stable

    2022-01-17 版权声明:原创文章,未经博主允许不得转载 3A5000 开始,龙芯转向 loongarch ,新的架构虽然甩掉了历史包袱,但也需要一段时间来积累生态.在这半年多的时间里, loo ...

  10. 【reverse】逆向6 JCC

    [reverse]逆向6 JCC 前言 我们之前学习的时候讲了,eip寄存器存储的是当前(即将执行的语句的) 指向地址 而我们之前提到的下断点(F2),就和我们编程中的下断点一样,执行到某句汇编指令然 ...