NOIP 模拟 $26\; \rm 神炎皇$
题解 \(by\;zj\varphi\)
一道 \(\varphi()\) 的题。
对于一个合法的数对,设它为 \((a*m,b*m)\) 则 \(((a+b)*m)|a*b*m^2\),所以 \((a+b)|a*b\),因为 \(\gcd(a,b)=1\),所以 \(a+b|m\)
那么设 \(a+b=k\),且 \(k*m\le n\),那么 \(k\) 最大为 \(\sqrt n\),所以枚举 \(k\) 即可,对于每个 \(k\),有 \(\rm \frac{n}{k^2}\) 个 \(m\) ,同时又有 \(\rm \varphi(k)\) 对 \(a+b\)
Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf,OPUT[100];
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
template<typename T>inline void print(T x) {
if (x<0) putchar('-'),x=-x;
if (!x) return putchar('0'),(void)putchar('\n');
ri cnt(0);
while(x) OPUT[p(cnt)]=x%10,x/=10;
for (ri i(cnt);i;--i) putchar(OPUT[i]^48);
return (void)putchar('\n');
}
}
using IO::read;using IO::print;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=1e7+7;
int vis[N],phi[N],prim[N],nm[N],cnt,sn;
ll n,ans;
inline void Getphi(int n) {
for (ri i(2);i<=n;p(i)) {
if (!vis[i]) phi[i]=i-1,vis[prim[p(cnt)]=i]=i;
for (ri j(1);j<=cnt&&prim[j]*i<=n;p(j)) {
int nw=i*prim[j];
vis[nw]=prim[j];
if (vis[i]==prim[j]) {
phi[nw]=phi[i]*prim[j];
break;
}
else phi[nw]=phi[i]*(prim[j]-1);
}
}
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nf.out","w",stdout);
read(n);
sn=sqrt(n);
Getphi(sn);
for (ri i(2);i<=sn;p(i)) ans+=(ll)phi[i]*(n/i/i);
print(ans);
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $26\; \rm 神炎皇$的更多相关文章
- NOIP模拟26「神炎皇·降雷皇·幻魔皇」
T1:神炎皇 又是数学题,气死,根本不会. 首先考虑式子\(a+b=ab\),我们取\(a\)与\(b\)的\(gcd\):\(d\),那么式子就可以改写成: \[(a'+b')*d=a'b' ...
- NOIP 模拟 $26\; \rm 降雷皇$
题解 \(by\;zj\varphi\) 用树状数组优化一下求最长上升子序列即可. 至于第二问,在求出答案后开 \(n\) 棵线段树,每颗维护当前最长上升子序列长度的方案数. Code #includ ...
- 【NOIP2017提高组模拟12.10】神炎皇
题目 神炎皇乌利亚很喜欢数对,他想找到神奇的数对. 对于一个整数对(a,b),若满足a+b<=n且a+b是ab的因子,则成为神奇的数对.请问这样的数对共有多少呢? 分析 设\(gcd(a,b)= ...
- 【JZOJ4919】【NOIP2017提高组模拟12.10】神炎皇
题目描述 神炎皇乌利亚很喜欢数对,他想找到神奇的数对. 对于一个整数对(a,b),若满足a+b<=n且a+b是ab的因子,则成为神奇的数对.请问这样的数对共有多少呢? 数据范围 对于100%的数 ...
- NOIP 模拟 $26\; \rm 幻魔皇$
题解 \(by\;zj\varphi\) 观察可发现一个点向它的子树走能到的白点,黑点数是一个斐波那契数列. 对于白色点对,可以分成两种情况: 两个白点的 \(lca\) 是其中一个白点 两个白点的 ...
- 「10.10」神炎皇(欧拉函数)·降雷皇(线段树,DP)·幻魔皇
A. 神炎皇 很好的一道题,可能第一次在考场上遇到欧拉函数 题意:对于一个整数对 $(a,b)$,若满足 $a\times b\leq n$且$a+b$是$a\times b$的因子, 则称为神奇的数 ...
- noip模拟26[肾炎黄·酱累黄·换莫黄]
\(noip模拟26\;solutions\) 这个题我做的确实是得心应手,为啥呢,因为前两次考试太难了 T1非常的简单,只不过我忘记了一个定理, T2就是一个小小的线段树,虽然吧我曾经说过我再也不写 ...
- [考试总结]noip模拟26
首先看到这样中二的题目心头一震.... 然而发现又是没有部分分数的一天. 然而正解不会打.... 那还是得要打暴力. 但是这套题目有两个题目只有一个参数. 所以... (滑稽).jpg 然后我就成功用 ...
- 2021.7.28考试总结[NOIP模拟26]
罕见的又改完了. T1 神炎皇 吸取昨天三个出规律的教训,开场打完T2 20pts直接大力打表1h. 但怎么说呢,我不懂欧拉函数.(其实exgcd都忘了 于是只看出最大平方因子,不得不线性筛,爆拿60 ...
随机推荐
- 「CF1438D」 Powerful Ksenia
「CF1438D」 Powerful Ksenia 题目大意 给定 \(n\) 个正整数,你可以任选三个数 \(a_i,a_j,a_k\),使这三个数都变为 \(a_i\oplus a_j\oplus ...
- 团队开发day05
在进行网络间的通信中,需要开启线程来实现网络连接, 但是在activity中无法拿到获取到的数据,数据只能在网络线程中查看 解决:通过Handler在线程之间进行通信,传递获取到的信息 Handler ...
- Vue+axios的四种异步请求,参数的携带以及接收
Vue中axios发送GET, POST, DELETE, PUT四种异步请求,参数携带和接收问题 web.xml配置如下 1.GET请求 发送GET请求: <!--params是关键字,说明所 ...
- Requests方法 --- post 请求body的四种类型
常见的 post 提交数据类型有四种: 1.第一种:application/json:这是最常见的 json 格式,也是非常友好的深受小伙伴喜欢的一种,如下{"input1":&q ...
- Java 获取、删除Word文本框中的表格
本文介绍如何来获取Word文本框中包含的表格,以及删除表格. 程序测试环境包括: IDEA JDK 1.8.0 Spire.Doc.jar 注:jar导入,可通过创建Maven程序项目,并在pom.x ...
- C# 连接MySQL数据库 ,查询条件中有中文时,查询不出结果
使用C#成功连接上MySql数据库后,但如果查询条件中有中文,查询结果就为空. String connetStr = "server=127.0.0.1;port=3306;user=roo ...
- Linux服务系统申请SSL证书方法
inux主要面向专业性较强的技术人员,如果是WEB站点通常采取PHP语言为主选,可选的服务器环境中有Apache.Nginx.Tomcat这几类为主的框架环境,有的图方便会用一些可视化一键式的控制面板 ...
- CH1809 匹配统计 题解
看了好久才懂,我好菜啊-- 题意:给两个字符串 \(a\) 与 \(b\),对于 \(q\) 次询问,每次询问给出一个 \(x\),求存在多少个位置使得 \(a\) 从该位置开始的后缀子串与 \(b\ ...
- visibility:hidden和display:none的区别
一.相同点 disable:none和visibility:hidden都能把网页上的某元素隐藏起来 二.不同点 display:none--不为被隐藏的对象保留其物理空间,即该对象在页面上彻底消失. ...
- ts 学习笔记 - 类
目录 类 类的概念 类的用法 属性和方法 类的继承 存取器 静态属性 Typescript 中的用法 抽象类 类的类型 类与接口 类实现接口 接口继承接口 接口继承类 混合类型 类 类的概念 类 (c ...