目录

Croce F. and Hein M. Mind the box: \(\ell_1\)-APGD for sparse adversarial attacks on image classifiers. In International Conference on Machine Learning (ICML), 2021.

以往的\(\ell_1\)攻击, 为了保证

\[\|x' - x\|_1 \le \epsilon, x' \in [0, 1]^d,
\]

其是通过两步投影的方式完成的, 即

\[x' = P_H \circ P_{B_1 (x; \epsilon)} (u).
\]

其中\(B_1\)表示1范数球, 而\(H\)表示\([0, 1]^d\)的空间.

本文直接

\[x' = P_S (u), \: S := H \bigcap B_1 (x; \epsilon).
\]

主要内容

上图展示了1范数球和\(S\), 可以发现, 差别还是很大的.

正因如此, 和\(\ell_{\infty}, \ell_2\)不同, 基于二步投影的\(\ell_1\)攻击非常低效.

于是乎, 作者直接投影到\(S\), 即考虑如下的优化问题:

\[\min_{z} \: \|z - u\|_2^2 \\
\mathrm{s.t.} \: \|z - x\|_1 \le \epsilon, \: z \in [0, 1]^d.
\]

不妨令\(\tilde{w} = z - x\), 则

\[\min_{\tilde{w}} \: \|\tilde{w} - (u - x)\|_2^2 \\
\mathrm{s.t.} \: \|\tilde{w}\|_1 \le \epsilon, \: \tilde{w} + x \in [0, 1]^d.
\]

再令\(w = \mathrm{sign}(u-x) \tilde{w}\), 此时有

\[\min_{w} \: \|w - |u - x|\|_2^2 \\
\mathrm{s.t.} \: \|w\|_1 \le \epsilon, \: \mathrm{sign}(u-x)w+ x \in [0, 1]^d.
\]

显然, \(w\)非负(否则徒增消耗罢了).

为此, 我们可以归结为上述问题为下述类型问题:

\[\min_{z} \: \frac{1}{2}\|z - |u|\|_2^2 \\
\mathrm{s.t.} \: \sum_i z_i \le \epsilon, \: z_i \ge 0, \: \mathrm{sign}(u)z + x \in [0, 1]^d.
\]

约束条件可以进一步改写为

\[\sum_i z_i \le \epsilon, \\
z_i \in [0, \gamma_i], \\
\gamma_i = \max \{-x\mathrm{sign} (u), (1 - x)\mathrm{sign}(u) \}.
\]

注: 这是从这篇论文中学到的一个很有趣的技巧:

\[\begin{array}{ll}
& a \le \mathrm{sign}(u)z + x \le b \\
\Leftrightarrow&
\mathrm{sign}(u) a \le z + \mathrm{sign}(u) x \le \mathrm{sign}(u)b \\
or & \mathrm{sign}(u) b \le z + \mathrm{sign}(u) x \le \mathrm{sign}(u)a \\
\Leftrightarrow&
z \in [(a - x)\mathrm{sign}(u), (b - x)\mathrm{sign}(u)].
\end{array}
\]

下面通过拉格朗日乘子法求解(既然是个凸问题, 假设\(\gamma > 0\)):

\[\mathcal{L}(z;\lambda; \alpha; \beta) = \frac{1}{2} \|z - |u|\|_2^2 + \lambda (\sum_i z_i - \epsilon) - \alpha^Tz + \beta^T (z - \gamma).
\]

由此可得KKT条件:

\[\nabla_{z_i}\mathcal{L} = (z_i - |u_i|) + \lambda - \alpha_i + \beta_i = 0; \\
\lambda (\sum_i z_i - \epsilon) = 0; \\
\alpha_i z_i = 0, \beta_i (z_i - \gamma_i) = 0; \\
\lambda, \alpha_i, \beta_i \ge 0.
\]

\[z_i = |u_i| - \lambda + \alpha_i - \beta_i.
\]

我们再来具体分析:

1.

\[\beta_i \not = 0
\Rightarrow z_i = \gamma_i > 0 \Rightarrow \alpha_i = 0.
\]

\[\beta_i = \max(0, |u_i| - \gamma_i - \lambda).
\]
\[\alpha_i \not = 0 \Rightarrow z_i = 0 \Rightarrow \beta_i = 0.
\]

\[\alpha_i = \max(0, \lambda - |u_i|).
\]

于是

\[z_i=\left\{
\begin{array}{ll}
0, & \lambda > |u_i| \\
|u_i| - \lambda, & |u_i| - \gamma_i \le \lambda \le |u_i| \\
\gamma_i, & \lambda < |u_i| - \gamma_i.
\end{array}
\right .
\]

其中\(\lambda\)是下列方程的解:

\[\lambda (\sum_i z_i - \epsilon) = 0.
\]

其有一个特殊的表达方式:

\[z_i = \max(0, \min(\gamma_i, |u_i| - \lambda)).
\]

\[\lambda (\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda)) - \epsilon) = 0.
\]

若\(\lambda=0\)时:

\[\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda)) \le \epsilon,
\]

则此时\(\lambda=0\)恰为最优解, 否则需要通过

\[\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda)) = \epsilon,
\]

求解出\(\lambda\).

因为\(\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda))\)关于\(\lambda\)是单调递减的, 作者给了一个方便的算法求解(虽然我对这个算法的表述有一点点疑惑).

除了投影之外, 作者还给出了一个最速下降方向, 证明是类似的.

作者关于\(\ell\)攻击的分析感觉很通透, 不错的文章啊.

Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers的更多相关文章

  1. Defending Adversarial Attacks by Correcting logits

    目录 概 主要内容 实验 Li Y., Xie L., Zhang Y., Zhang R., Wang Y., Tian Q., Defending Adversarial Attacks by C ...

  2. DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS

    目录 概 主要内容 Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Ad ...

  3. Towards Deep Learning Models Resistant to Adversarial Attacks

    目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...

  4. 论文阅读 | Real-Time Adversarial Attacks

    摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...

  5. Exploring Adversarial Attack in Spiking Neural Networks with Spike-Compatible Gradient

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设 ...

  6. Adversarial Detection methods

    目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...

  7. Adversarial Examples Are Not Bugs, They Are Features

    目录 概 主要内容 符号说明及部分定义 可用特征 稳定可用特征 可用不稳定特征 标准(standard)训练 稳定(robust)训练 分离出稳定数据 分离出不稳定数据 随机选取 选取依赖于 比较重要 ...

  8. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks

    目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram ...

  9. Adversarial Examples Improve Image Recognition

    Xie C, Tan M, Gong B, et al. Adversarial Examples Improve Image Recognition.[J]. arXiv: Computer Vis ...

随机推荐

  1. A Child's History of England.32

    And so, in darkness and in prison, many years, he thought of all his past life, of the time he had w ...

  2. day28 进程(Process)

    day28 进程(Process) 1.进程的概念 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础. # 进程是系统进行 ...

  3. 20. VIM命令操作技巧

    V可视化选中当前行,根据光标可多行 ctrl+v 可视化块 v可视化根据光标 行间移动 快速增删改查 d 0 删除当前位置到行首 d $ 删除当前位置到行尾 d  t  (" ] ) )符号 ...

  4. Vue中加载百度地图

    借助百度地图的 LocalSearch 和 Autocomplete 两个方法 实现方式:通过promise以及百度地图的callback回调函数 map.js 1 export function M ...

  5. c++string转const char*与char*

    #include <iostream> #include <string> #include <memory> using namespace std; const ...

  6. 颜色RGB值对照表

    转载自 http://www.91dota.com/?p=49# 常用颜色的RGB值及中英文名称   颜  色    RGB值 英文名 中文名   #FFB6C1 LightPink 浅粉红   #F ...

  7. 理解inode以及软硬连接,和inode磁盘爆满的解决方案以及文件权限

    理解Linux的软硬链接 创建硬链接的命令 [root@centos6 data]#ln /data/f1 /data/f2 [root@centos6 data]#ll -itotal 1613 - ...

  8. HTML DOM 对象 - 方法和属性

    一些常用的 HTML DOM 方法: getElementById(id) - 获取带有指定 id 的节点(元素) appendChild(node) - 插入新的子节点(元素) removeChil ...

  9. MyEclipse配置Hibernate框架(基础篇)

    一.创建java project项目 二.项目右键Configure Facets -- Install Hibernate Facet 三.项目添加对应数据库的jar包 四.编写实体类 packag ...

  10. 【力扣】82. 删除排序链表中的重复元素 II

    存在一个按升序排列的链表,给你这个链表的头节点 head ,请你删除链表中所有存在数字重复情况的节点,只保留原始链表中 没有重复出现 的数字. 返回同样按升序排列的结果链表. 示例 1: 输入:hea ...