目录

Croce F. and Hein M. Mind the box: \(\ell_1\)-APGD for sparse adversarial attacks on image classifiers. In International Conference on Machine Learning (ICML), 2021.

以往的\(\ell_1\)攻击, 为了保证

\[\|x' - x\|_1 \le \epsilon, x' \in [0, 1]^d,
\]

其是通过两步投影的方式完成的, 即

\[x' = P_H \circ P_{B_1 (x; \epsilon)} (u).
\]

其中\(B_1\)表示1范数球, 而\(H\)表示\([0, 1]^d\)的空间.

本文直接

\[x' = P_S (u), \: S := H \bigcap B_1 (x; \epsilon).
\]

主要内容

上图展示了1范数球和\(S\), 可以发现, 差别还是很大的.

正因如此, 和\(\ell_{\infty}, \ell_2\)不同, 基于二步投影的\(\ell_1\)攻击非常低效.

于是乎, 作者直接投影到\(S\), 即考虑如下的优化问题:

\[\min_{z} \: \|z - u\|_2^2 \\
\mathrm{s.t.} \: \|z - x\|_1 \le \epsilon, \: z \in [0, 1]^d.
\]

不妨令\(\tilde{w} = z - x\), 则

\[\min_{\tilde{w}} \: \|\tilde{w} - (u - x)\|_2^2 \\
\mathrm{s.t.} \: \|\tilde{w}\|_1 \le \epsilon, \: \tilde{w} + x \in [0, 1]^d.
\]

再令\(w = \mathrm{sign}(u-x) \tilde{w}\), 此时有

\[\min_{w} \: \|w - |u - x|\|_2^2 \\
\mathrm{s.t.} \: \|w\|_1 \le \epsilon, \: \mathrm{sign}(u-x)w+ x \in [0, 1]^d.
\]

显然, \(w\)非负(否则徒增消耗罢了).

为此, 我们可以归结为上述问题为下述类型问题:

\[\min_{z} \: \frac{1}{2}\|z - |u|\|_2^2 \\
\mathrm{s.t.} \: \sum_i z_i \le \epsilon, \: z_i \ge 0, \: \mathrm{sign}(u)z + x \in [0, 1]^d.
\]

约束条件可以进一步改写为

\[\sum_i z_i \le \epsilon, \\
z_i \in [0, \gamma_i], \\
\gamma_i = \max \{-x\mathrm{sign} (u), (1 - x)\mathrm{sign}(u) \}.
\]

注: 这是从这篇论文中学到的一个很有趣的技巧:

\[\begin{array}{ll}
& a \le \mathrm{sign}(u)z + x \le b \\
\Leftrightarrow&
\mathrm{sign}(u) a \le z + \mathrm{sign}(u) x \le \mathrm{sign}(u)b \\
or & \mathrm{sign}(u) b \le z + \mathrm{sign}(u) x \le \mathrm{sign}(u)a \\
\Leftrightarrow&
z \in [(a - x)\mathrm{sign}(u), (b - x)\mathrm{sign}(u)].
\end{array}
\]

下面通过拉格朗日乘子法求解(既然是个凸问题, 假设\(\gamma > 0\)):

\[\mathcal{L}(z;\lambda; \alpha; \beta) = \frac{1}{2} \|z - |u|\|_2^2 + \lambda (\sum_i z_i - \epsilon) - \alpha^Tz + \beta^T (z - \gamma).
\]

由此可得KKT条件:

\[\nabla_{z_i}\mathcal{L} = (z_i - |u_i|) + \lambda - \alpha_i + \beta_i = 0; \\
\lambda (\sum_i z_i - \epsilon) = 0; \\
\alpha_i z_i = 0, \beta_i (z_i - \gamma_i) = 0; \\
\lambda, \alpha_i, \beta_i \ge 0.
\]

\[z_i = |u_i| - \lambda + \alpha_i - \beta_i.
\]

我们再来具体分析:

1.

\[\beta_i \not = 0
\Rightarrow z_i = \gamma_i > 0 \Rightarrow \alpha_i = 0.
\]

\[\beta_i = \max(0, |u_i| - \gamma_i - \lambda).
\]
\[\alpha_i \not = 0 \Rightarrow z_i = 0 \Rightarrow \beta_i = 0.
\]

\[\alpha_i = \max(0, \lambda - |u_i|).
\]

于是

\[z_i=\left\{
\begin{array}{ll}
0, & \lambda > |u_i| \\
|u_i| - \lambda, & |u_i| - \gamma_i \le \lambda \le |u_i| \\
\gamma_i, & \lambda < |u_i| - \gamma_i.
\end{array}
\right .
\]

其中\(\lambda\)是下列方程的解:

\[\lambda (\sum_i z_i - \epsilon) = 0.
\]

其有一个特殊的表达方式:

\[z_i = \max(0, \min(\gamma_i, |u_i| - \lambda)).
\]

\[\lambda (\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda)) - \epsilon) = 0.
\]

若\(\lambda=0\)时:

\[\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda)) \le \epsilon,
\]

则此时\(\lambda=0\)恰为最优解, 否则需要通过

\[\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda)) = \epsilon,
\]

求解出\(\lambda\).

因为\(\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda))\)关于\(\lambda\)是单调递减的, 作者给了一个方便的算法求解(虽然我对这个算法的表述有一点点疑惑).

除了投影之外, 作者还给出了一个最速下降方向, 证明是类似的.

作者关于\(\ell\)攻击的分析感觉很通透, 不错的文章啊.

Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers的更多相关文章

  1. Defending Adversarial Attacks by Correcting logits

    目录 概 主要内容 实验 Li Y., Xie L., Zhang Y., Zhang R., Wang Y., Tian Q., Defending Adversarial Attacks by C ...

  2. DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS

    目录 概 主要内容 Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Ad ...

  3. Towards Deep Learning Models Resistant to Adversarial Attacks

    目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...

  4. 论文阅读 | Real-Time Adversarial Attacks

    摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...

  5. Exploring Adversarial Attack in Spiking Neural Networks with Spike-Compatible Gradient

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设 ...

  6. Adversarial Detection methods

    目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...

  7. Adversarial Examples Are Not Bugs, They Are Features

    目录 概 主要内容 符号说明及部分定义 可用特征 稳定可用特征 可用不稳定特征 标准(standard)训练 稳定(robust)训练 分离出稳定数据 分离出不稳定数据 随机选取 选取依赖于 比较重要 ...

  8. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks

    目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram ...

  9. Adversarial Examples Improve Image Recognition

    Xie C, Tan M, Gong B, et al. Adversarial Examples Improve Image Recognition.[J]. arXiv: Computer Vis ...

随机推荐

  1. 游戏案例|Service Mesh 在欢乐游戏的应用演变和实践

    作者 陈智伟,腾讯 12 级后台专家工程师,现负责欢乐游戏工作室公共后台技术研发以及团队管理工作.在微服务分布式架构以及游戏后台运维研发有丰富的经验. 前言 欢乐游戏工作室后台是分布式微服务架构,目前 ...

  2. Mysql索引数据结构详解(1)

    慢查询解决:使用索引  索引是帮助Mysql高效获取数据的排好序的数据结构 常见的存储数据结构: 二叉树    二叉树不适合单边增长的数据 红黑树(又称二叉平衡树)    红黑树会自动平衡父节点两边的 ...

  3. 【Reverse】每日必逆0x03

    BUU-刮开有奖 附件:https://files.buuoj.cn/files/abe6e2152471e1e1cbd9e5c0cae95d29/8f80610b-8701-4c7f-ad60-63 ...

  4. 【Linux】【Services】【VersionControl】Git基础概念及使用

    1. 简介 1.1. 版本控制工具: 本地版本控制系统: 集中化版本控制系统:CVS,SVN 分布式版本控制系统: BitKeeper,Git 1.2. 官方网站: https://git-scm.c ...

  5. oracle(数据文件)

    --创建数据文件 create tablespace--创建表空间同时创建数据文件 create temporary tablespace --创建临时表空间的同时创建临时数据文件 alter tab ...

  6. Plist文件和字典转模型

    模型与字典 1. 用模型取代字典的好处 使用字典的坏处 编译器没有自动提醒的功能,需要手敲 key如果写错了编译器也不会报错 2. 模型概念 概念 专门用来存放数据的对象 特点 一般继承自NSObje ...

  7. Vue中的8种组件通信方式

    Vue是数据驱动视图更新的框架,所以对于vue来说组件间的数据通信非常重要. 常见使用场景可以分为三类: 父子组件通信: props / $emit $parent / $children provi ...

  8. Thymeleaf+layui+jquery复选框回显

    一.Thymeleaf+layui+jquery复选框回显 基于Thymeleaf模板下的layui+jquery复选框回显,主要是jquery.大致意思是:把数组转成JSON传到前台,再在前台转回数 ...

  9. 【模型推理】Tengine 模型转换及量化

      欢迎关注我的公众号 [极智视界],回复001获取Google编程规范   O_o   >_<   o_O   O_o   ~_~   o_O   本文介绍一下 Tengine 模型转换 ...

  10. Samba 源码解析之SMBclient命令流

    smbclient提供了类似FTP式的共享文件操作功能, 本篇从源码角度讲解smbclient的实现,smbclient命令的具体使用可通过help命令和互联网查到大量资料. 以下从源码角度分析一个s ...