Codeforces 450E:Jzzhu and Apples(构造,数学)
E. Jzzhu and Apples
time limit per test: 1 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output
Jzzhu has picked \(n\) apples from his big apple tree. All the apples are numbered from \(1\) to \(n\). Now he wants to sell them to an apple store.
Jzzhu will pack his apples into groups and then sell them. Each group must contain two apples, and the greatest common divisor of numbers of the apples in each group must be greater than \(1\). Of course, each apple can be part of at most one group.
Jzzhu wonders how to get the maximum possible number of groups. Can you help him?
Input
A single integer \(n (1 ≤ n ≤ 10^5)\), the number of the apples.
Output
The first line must contain a single integer \(m\), representing the maximum number of groups he can get. Each of the next m lines must contain two integers — the numbers of apples in the current group.
If there are several optimal answers you can print any of them.
input
6
output
2
6 3
2 4
input
9
output
3
9 3
2 4
6 8
input
2
output
0
题意
给出正整数\(n\),求出\(\left[1,n\right]\)之间的正整数有多少对数字的最大公约数不等于\(1\),输出最多的组数,并按任意顺序输出这些数字
思路
要使\(gcd(x,y)>1\),那么\(x,y\)中的较小的数一定不大于\(n/2\),所以我们首先筛出来\([1,n/2]\)范围内的素数
筛出来素数之后,每次在取数的时候,要保证取完数之后,不会使总的符合要求的数对减少,所以我们从最大的素数(假设为\(x\))开始枚举,能够整除\(x\)的整数一定使最少的,而且不会影响到别的数对(感性理解一下:因为枚举到了\(n/2\),所以\(n/x<=3\),\(2\)的倍数还是很多的减少一个没什么影响,\(n/x=3\)时,大概只有\(n=9\)的时候,那么也是不会产生影响的)
然后去统计当前素数\(p\)的倍数个数\(num\),如果\(num\)是偶数,直接匹配(为了简便,就相邻的两个数组成一对)
如果\(num\)是奇数,我们可以将\(p\)的\(2\)倍和\(num\)倍交换位置,这样匹配完剩下的那个数可以去和\(2\)的倍数来匹配,这样可以达到最优
代码
#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=1e6+10;
const int mod=1e9+7;
const int maxm=1e3+10;
using namespace std;
int vis[maxn];
int prime[maxn];
int cnt;
int a[maxn];
void get_prime(int n)
{
vis[0]=vis[1]=1;
for(int i=2;2*i<=n;i++)
if(!vis[i])
for(int j=2;j*i*2<=n;j++)
vis[j*i]=1;
for(int i=2;2*i<=n;i++)
if(!vis[i])
prime[cnt++]=i;
}
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("/home/wzy/in", "r", stdin);
freopen("/home/wzy/out", "w", stdout);
srand((unsigned int)time(NULL));
#endif
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin>>n;
get_prime(n);
ms(vis,0);
vector<pair<int,int> >ve;
for(int i=cnt-1;i>=0;i--)
{
int tot=0;
for(int j=prime[i];j<=n;j+=prime[i])
if(!vis[j])
a[++tot]=j;
// 如果倍数有奇数个,交换第二个和最后一个
if(tot&1)
swap(a[2],a[tot]);
for(int j=1;j+1<=tot;j+=2)
{
vis[a[j]]=vis[a[j+1]]=1;
ve.push_back({a[j],a[j+1]});
}
}
cout<<ve.size()<<endl;
for(auto i:ve)
cout<<i.first<<" "<<i.second<<endl;
#ifndef ONLINE_JUDGE
cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
#endif
return 0;
}
Codeforces 450E:Jzzhu and Apples(构造,数学)的更多相关文章
- CF 450E Jzzhu and Apples 数学+模拟
E. Jzzhu and Apples time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces 449C Jzzhu and Apples 贪心 (看题解)
Jzzhu and Apples 从大的质因子开始贪心, 如果有偶数个则直接组合, 如果是奇数个留下那个质数的两倍, 其余两两组合. #include<bits/stdc++.h> #de ...
- [codeforces] 449C Jzzhu and Apples
原题 质因数分解后贪心即可(最后贪2) #include<cstdio> #include<vector> #include<stack> #include< ...
- Codeforces Round #257 (Div. 2) E题:Jzzhu and Apples 模拟
E. Jzzhu and Apples time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces 449.C Jzzhu and Apples
C. Jzzhu and Apples time limit per test 1 second memory limit per test 256 megabytes input standard ...
- CF449C Jzzhu and Apples (筛素数 数论?
Codeforces Round #257 (Div. 1) C Codeforces Round #257 (Div. 1) E CF450E C. Jzzhu and Apples time li ...
- CF449 C. Jzzhu and Apples
/* http://codeforces.com/problemset/problem/449/C cf 449 C. Jzzhu and Apples 数论+素数+贪心 */ #include &l ...
- CodeForces 450B Jzzhu and Sequences (矩阵优化)
CodeForces 450B Jzzhu and Sequences (矩阵优化) Description Jzzhu has invented a kind of sequences, they ...
- Codeforces C. Jzzhu and Cities(dijkstra最短路)
题目描述: Jzzhu and Cities time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
随机推荐
- javaSE高级篇4 — 反射机制( 含类加载器 ) — 更新完毕
反射机制 1.反射机制是什么?----英文单词是:reflect.在java.lang包下---这才是java最牛逼的技术 首先提前知道一句话----在java中,有了对象,于是有了类,那么有了类之后 ...
- 纯CSS圆环与圆
1. 两个标签的嵌套: <div class="element1"> <div class="child1"></div> ...
- 【leetcode】121. Best Time to Buy and Sell Stock(股票问题)
You are given an array prices where prices[i] is the price of a given stock on the ith day. You want ...
- python下载openpyxl
直接下载openpyxl报错 ERROR: Command errored out with exit status 1: python setup.py egg_info Check the log ...
- 转 proguard 混淆工具的用法 (适用于初学者参考)
转自:https://www.cnblogs.com/lmq3321/p/10320671.html 一. ProGuard简介 附:proGuard官网 因为Java代码是非常容易反编码的,况且An ...
- Linux学习 - IP地址配置
1 首先选择桥接模式 2 配置IP.子网掩码.网关.DNS setup 本例中使用的是无线网连接, IP地址: 192.168.3.195 子网掩码: 255.255.255.0 网关: 192. ...
- clickhouse安装数据导入及查询测试
官网 https://clickhouse.tech/ quick start ubantu wget https://repo.yandex.ru/clickhouse/deb/lts/main/c ...
- 重量级&轻量级
重量级 就是说包的大小,还有就是与个人项目的耦合程度,重量级的框架与项目耦合程度大些 代表EJB容器的服务往往是"买一送三",不要都不行 轻量级 就是相对较小的包,当然与项目的耦合 ...
- springboot整合jetty
1.jetty介绍 通常我们进行Java Web项目开发,必须要选择一种服务器来部署并运行Java应用程序,Tomcat和Jetty作为目前全球范围内最著名的两款开源servlet容器,该怎么选呢. ...
- OceanBase 2.x体验:推荐用DBeaver工具连接数据库
Original MQ4096 [OceanBase技术闲谈](javascript:void(0) 2020-01-15 OceanBase 2.x体验:推荐用DBeaver工具连接数据库 Ocea ...