BZOJ 4556 [HEOI2016/TJOI2016]字符串

其实题解更多是用后缀数组+数据结构的做法,貌似也不好写。

反正才学了 sam 貌似比较简单的做法。

还是得先二分,然后倍增跳到 $ s[c...c+mid-1] $ 所在的节点,然后看看有没有 endpos 在 $ a+mid-1...b $ 内就好了。

复杂度是二分和倍增的 $ nlog^2n $。

其实这道题因为只用求 endpos 是否存在啥的 vector + lower_bound 貌似都可以过了。。但其实启发式合并也不好写,还是写一下线段树合并吧,有些时候会要求维护一些其他的信息,而且复杂度只在最初合并有区别,并不是复杂度瓶颈。

开始线段树写成 On T了半天海星。。

#include "iostream"
#include "algorithm"
#include "cstring"
#include "cstdio"
#include "ctime"
using namespace std;
#define MAXN 200006
int n , m , ps;
char ch[MAXN];
namespace solve { int T[MAXN*20] , ls[MAXN*20] , rs[MAXN*20] , rt[MAXN] , cn;
void add( int& rt , int l , int r , int p ) {
if( !rt ) rt = ++ cn;
++ T[rt];
if( l == r ) return;
int m = l + r >> 1;
if( p <= m ) add( ls[rt] , l , m , p );
else add( rs[rt] , m + 1 , r , p );
}
int merge( int u , int v , int l , int r ) {
if( !u || !v ) return u ^ v;
int cur = ++ cn , m = l + r >> 1;
T[cur] = T[u] + T[v];
if( l == r ) return cur;
ls[cur] = merge( ls[u] , ls[v] , l , m );
rs[cur] = merge( rs[u] , rs[v] , m + 1 , r );
return cur;
}
int que( int rt , int l , int r , int L , int R ) {
if( !rt ) return 0;
if( L <= l && R >= r ) return T[rt];
int m = l + r >> 1 , res = 0;
if( L <= m ) res += que( ls[rt] , l , m , L , R );
if( R > m ) res += que( rs[rt] , m + 1 , r , L , R );
return res;
} int son[MAXN][26] , len[MAXN] , par[MAXN] , lst[MAXN];
int last , cnt; int head[MAXN] , to[MAXN] , nex[MAXN] , ecn;
void ade( int u , int v ) {
to[++ ecn] = v , nex[ecn] = head[u] , head[u] = ecn;
}
void addall( ) {
for( int i = 2 ; i <= cnt ; ++ i ) ade( par[i] , i );
} void init( ) {
cnt = last = 1;
}
void ins( int c ) {
int cur = ++ cnt;
len[cur] = len[last] + 1;
int p = last;
while( p && !son[p][c] ) son[p][c] = cur , p = par[p];
if( !p ) par[cur] = 1;
else {
int q = son[p][c];
if( len[q] == len[p] + 1 ) par[cur] = q;
else {
int cl = ++ cnt;
memcpy( son[cl] , son[q] , sizeof son[q] );
par[cl] = par[q] , len[cl] = len[p] + 1;
par[q] = par[cur] = cl;
while( p ) { if( son[p][c] == q ) son[p][c] = cl; p = par[p]; }
}
}
last = cur , lst[++ ps] = cur;
add( rt[cur] , 1 , n , ps );
}
int G[MAXN][19];
int work( int u , int ln ) {
for( int k = 18 ; k >= 0 ; -- k )
if( len[G[u][k]] >= ln ) u = G[u][k];
return u;
}
void dfs( int u , int fa ) {
for( int i = head[u] ; i ; i = nex[i] ) {
int v = to[i];
if( v == fa ) continue;
G[v][0] = u;
for( int k = 1 ; k < 19 ; ++ k )
if( G[G[v][k-1]][k-1] ) G[v][k] = G[G[v][k-1]][k-1];
else break;
dfs( v , u );
rt[u] = merge( rt[u] , rt[v] , 1 , n );
}
}
} int main() {
//freopen("7.in","r",stdin);
//freopen("ot","w",stdout);
cin >> n >> m;
scanf("%s",ch + 1);
using namespace solve;
init( );
for( int i = 1 ; i <= n ; ++ i )
ins( ch[i] - 'a' );
addall( );
dfs( 1 , 1 );
for( int i = 1 , a , b , c , d ; i <= m ; ++ i ) {
scanf("%d%d%d%d",&a,&b,&c,&d);
int l = 1 , r = d - c + 1;
while( l <= r ) {
int mid = l + r >> 1;
int t = work( lst[c + mid - 1] , mid );
if( que( rt[t] , 1 , n , a + mid - 1 , b ) ) l = mid + 1;
else r = mid - 1;
}
printf("%d\n",r);
}
}

BZOJ 4556 [HEOI2016/TJOI2016]字符串的更多相关文章

  1. 【BZOJ 4556】[Tjoi2016&Heoi2016]字符串 SAM+二分+主席树

    这道题市面上就两种法:一种是SA+二分+主席树,一种是SAM+二分+主席树(有不少人打线段树合并???)(除此之外还有一种利用炒鸡水的数据的暴力SA,贼快.....)(当时学SA的时候没做这道题,现在 ...

  2. BZOJ.4553.[HEOI2016&TJOI2016]序列(DP 树状数组套线段树/二维线段树(MLE) 动态开点)

    题目链接:BZOJ 洛谷 \(O(n^2)\)DP很好写,对于当前的i从之前满足条件的j中选一个最大值,\(dp[i]=d[j]+1\) for(int j=1; j<i; ++j) if(a[ ...

  3. P4094 [HEOI2016/TJOI2016]字符串 后缀数组+主席树+二分答案

    $ \color{#0066ff}{ 题目描述 }$ 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为n的字符串s,和m个问题.佳媛姐姐必须 ...

  4. [HEOI2016/TJOI2016]字符串

    嘟嘟嘟 今天复习一下SAM. lcp固然不好做,干脆直接翻过来变成后缀.首先答案一定满足单调性,所以我们二分lcp的长度\(mid\),然后判断\(s[d \ldots d + mid - 1]\)是 ...

  5. BZOJ.4555.[HEOI2016&TJOI2016]求和(NTT 斯特林数)

    题目链接 \(Description\) 求\[\sum_{i=0}^n\sum_{j=0}^iS(i,j)\times 2^j\times j!\mod 998244353\] 其中\(S(i,j) ...

  6. [HEOI2016/TJOI2016]字符串(后缀数组+二分+主席树/后缀自动机+倍增+线段树合并)

    后缀数组解法: 先二分最长前缀长度 \(len\),然后从 \(rnk[c]\) 向左右二分 \(l\) 和 \(r\) 使 \([l,r]\) 的 \(height\geq len\),然后在主席树 ...

  7. 洛谷 P4093: bzoj 4553: [HEOI2016/TJOI2016]序列

    题目传送门:洛谷P4093. 题意简述: 给定一个长度为 \(n\) 的序列 \(a\). 同时这个序列还可能发生变化,每一种变化 \((x_i,y_i)\) 对应着 \(a_{x_i}\) 可能变成 ...

  8. BZOJ.4552.[HEOI2016/TJOI2016]排序(线段树合并/二分 线段树)

    题目链接 对于序列上每一段连续区间的数我们都可以动态开点建一棵值域线段树.初始时就是\(n\)棵. 对于每次操作,我们可以将\([l,r]\)的数分别从之前它所属的若干段区间中分离出来,合并. 对于升 ...

  9. 【[HEOI2016/TJOI2016]字符串】

    码农题啊 上来先无脑一个\(SA\)的板子,求出\(SA\)和\(het\)数组 我们只需要从\(sa[i]\in[a,b]\)的所有\(i\)中找到一个\(i\)使得\(sa[i]\)和\(rk[c ...

随机推荐

  1. [no code][scrum meeting] Alpha 2

    项目 内容 会议时间 2020-04-07 会议主题 功能规格说明书review 会议时长 30min 参会人员 OCR组(肖思炀,赵涛)和产品经理 $( "#cnblogs_post_bo ...

  2. 【二食堂】Alpha - 事后分析

    事后分析 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? Alpha阶段要解决的问题是:根据用户标注的信息完成知识图谱的生成渲染.要解决的问题定义得比较 ...

  3. BUAA_2020_软件工程_软件案例分析作业

    项目 内容 这个作业属于那个课程 班级博客 这个作业的要求在哪里 作业要求 我在这个课程的目标是 学习掌握软件工程的相关知识 这个作业在哪个具体方面帮我实现目标 通过对具体软件案例的分析学习软件工程 ...

  4. linux系统上国际化失败

    文章目录 一.需求: 二.出现的问题 三.代码结构 1.配置文件中的配置 2.java代码中的使用 四.解决方案 一.需求: 最近项目中有这么一个需求,当用户当前的语言环境是 中文时,导出的 exce ...

  5. spring cloud config 结合 spring cloud bus实现配置自定的刷新

    在线上环境中,有时候我们希望系统中的某些配置参数在修改后,可以立即生效而不用重新启动服务.由上一节我们知道,我们可以把配置文件统一放到配置服务中进行管理,这一节我们在配置中心中整合spring clo ...

  6. 零基础入门C/C++实现你的浪漫表白:浪漫流星雨表白程序

    想要讨女朋友欢心也巩固自己所学的知识,各位小伙伴有自己的想法了吗?准备好想要怎样实施了吗?有什么美好的计划了吗?如果没有的话那么别慌,我知道,在座的各位肯定都是有自己的心仪的姑娘,那么今天就教大家一招 ...

  7. 六步教你如何用PADS进行PCB设计?

    在使用PADS进行PCB设计的过程中,需要对印制板的设计流程以及相关的注意事项进行重点关注,这样才能更好的为工作组中的设计人员提供系统的设计规范,同时也方便设计人员之间进行相互的交流和检查. 02 设 ...

  8. 万能构造解决Rolle中值问题

    只要原函数是两个函数的乘积形式,皆可此构造.

  9. 0x03

    指数级枚举:1到n任意选取的所有方案数: #include<bits/stdc++.h> using namespace std; int n,a[1100],vis[1100],cnt, ...

  10. 近期业务大量突增微服务性能优化总结-3.针对 x86 云环境改进异步日志等待策略

    最近,业务增长的很迅猛,对于我们后台这块也是一个不小的挑战,这次遇到的核心业务接口的性能瓶颈,并不是单独的一个问题导致的,而是几个问题揉在一起:我们解决一个之后,发上线,之后发现还有另一个的性能瓶颈问 ...