Codeforces 679E - Bear and Bad Powers of 42(线段树+势能分析)
这个 \(42\) 的条件非常奇怪,不过注意到本题 \(a_i\) 范围的最大值为 \(10^{14}\),而在值域范围内 \(42\) 的幂的个数最多只有 \(13\) 个,故考虑用类似于 seg-beats 的方法解决这道题。
首先不考虑操作 \(2\)(区间赋值操作),我们很容易发现一个性质,那就是我们对一个区间进行区间加的操作,每额外进行一次,都是因为存在某个数 \(a_i\) 达到了 \(42\) 的整数次幂,而我们的 \(a_i\) 是单调递增的,故每个数最多只可能出现 \(13\) 次成为 \(42\) 的整数次幂的时刻,故总操作次数最多只有 \(1.3\times 10^6\),于是暴力加是不会出问题的。故现在问题转化为怎样求一个区间中是否存在 \(42\) 的整数次幂。
考虑记 \(b_i\) 为 \(\geq a_i\) 的最小的 \(42\) 的整数次幂。显然我们对区间进行 \(+v\) 操作相当于将对应区间 \(b_i-a_i\) 的值 \(-v\),这个操作可以用线段树维护。当然,我们进行一次 \(-v\) 操作后会导致某些 \(b_i-a_i\) 变成负数,也就是说,此时的 \(b_i\) 不再是 \(\geq a_i\) 的最小的 \(42\) 的整数次幂了,我们对于这样的 \(i\) 暴力修改 \(b_i\) 的值,具体来说,线段树维护 \(b_i-a_i\) 的最小值,每次修改后在线段树上进行一遍递归,当递归到某个区间时若该区间 \(b_i-a_i\) 的最小值 \(\geq 0\) 则意味着不存在 \(b_i-a_i<0\) 的 \(i\),直接 return
就行了,否则继续递归左右儿子,递归到叶子节点直接把值改掉。由之前的分析可知最多修改次数也是 \(1.3\times 10^6\),如此暴力进行下去直到全局 \(b_i-a_i\) 不为 \(0\)(不存在 \(a_i=b_i\))即可,复杂度 \(q\log_{42}(qa_i)\log n\)。
接下来考虑加上区间赋值操作之后怎么处理。由于我们有区间赋值操作,故刚才总操作次数 \(1.3\times 10^6\) 的复杂度上界就不再存在了(不过听说按照之前的套路暴力赋值也能过?大概是因为这题数据比较难卡罢)。不过作为精益求精的 OIer,我们要思考更优秀的做法。不难发现进行一遍区间赋值之后会使很多位置上的值变成同一个值,也就是说我们区间赋值操作会将序列划分成一段段,我们考虑用 multiset
维护每一段的右端点,这样查询的时候只用查询对应位置所在段的右端点的值即可。
具体来说,初始状态下所有元素都单独成段,也就是每个元素都是对应段的右端点。当我们进行 \(2\) 操作的时候,相当于 \([l,r]\) 成为了完整的一段,故我们将 multiset
中 \([l,r-1]\) 内的元素全部删除并插入 \(r\),由于我们只关心段的右端点的值即可,于是我们将线段树 \([l,r-1]\) 位置上赋上 INF(为了保证它们永远不会变成负数),暂且忽略它们的存在,并将 \(r\) 位置上的值改为待赋的值。当然,这样也会导致 \(l-1\) 成为新的段的右端点,故在 multiset
中插入 \(l-1\),并将 \(l-1\) 位置上的值改为真实值(原本 \(l-1\) 所在段的右端点的值)即可。其余都和不考虑操作 \(2\) 的版本一样。
复杂度还是 \(q\log_{42}(qa_i)\log n\)。
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=1e5;
const int LOG_42=13;
const ll INF=1e18;
int n,qu;set<int> st;
ll pw42[LOG_42+2];
ll get42(ll v){return *lower_bound(pw42,pw42+LOG_42+1,v);}
struct node{int l,r;ll v,tag_lz,add_lz;} s[MAXN*4+5];
ll a[MAXN+5],nxt42[MAXN+5];
void pushup(int k){s[k].v=min(s[k<<1].v,s[k<<1|1].v);}
void pushdown(int k){
if(s[k].tag_lz!=0){
s[k<<1].v=s[k].tag_lz;s[k<<1|1].v=s[k].tag_lz;
s[k<<1].tag_lz=s[k].tag_lz;s[k<<1|1].tag_lz=s[k].tag_lz;
s[k].tag_lz=0;
}
if(s[k].add_lz!=0){
s[k<<1].v+=s[k].add_lz;s[k<<1|1].v+=s[k].add_lz;
s[k<<1].add_lz+=s[k].add_lz;s[k<<1|1].add_lz+=s[k].add_lz;
s[k].add_lz=0;
}
}
void build(int k,int l,int r){
s[k].l=l;s[k].r=r;
if(l==r){nxt42[l]=get42(a[l]);s[k].v=nxt42[l]-a[l];return;}
int mid=l+r>>1;build(k<<1,l,mid);build(k<<1|1,mid+1,r);
pushup(k);
}
void assign(int k,int l,int r,ll x){
if(l<=s[k].l&&s[k].r<=r){s[k].tag_lz=s[k].v=x;return;}
pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) assign(k<<1,l,r,x);
else if(l>mid) assign(k<<1|1,l,r,x);
else assign(k<<1,l,r,x),assign(k<<1|1,mid+1,r,x);
pushup(k);
}
void change_v(int k,int p,ll x){
if(s[k].l==s[k].r){
nxt42[s[k].l]=get42(x);s[k].v=nxt42[s[k].l]-x;return;
} pushdown(k);int mid=s[k].l+s[k].r>>1;
if(p<=mid) change_v(k<<1,p,x);
else change_v(k<<1|1,p,x);
pushup(k);
}
void add(int k,int l,int r,ll x){
if(l<=s[k].l&&s[k].r<=r){s[k].add_lz+=x;s[k].v+=x;return;}
pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) add(k<<1,l,r,x);
else if(l>mid) add(k<<1|1,l,r,x);
else add(k<<1,l,r,x),add(k<<1|1,mid+1,r,x);
pushup(k);
}
void killneg(int k){
if(s[k].v>=0) return;
if(s[k].l==s[k].r){
s[k].v=nxt42[s[k].l]-s[k].v;
nxt42[s[k].l]=get42(s[k].v);
s[k].v=nxt42[s[k].l]-s[k].v;
return;
} pushdown(k);killneg(k<<1);killneg(k<<1|1);
pushup(k);
}
ll getdif(int k,int p){
if(s[k].l==s[k].r) return s[k].v;
int mid=s[k].l+s[k].r>>1;pushdown(k);
if(p<=mid) return getdif(k<<1,p);
else return getdif(k<<1|1,p);
}
ll query(int k,int p){
if(s[k].l==s[k].r) return nxt42[s[k].l]-s[k].v;
int mid=s[k].l+s[k].r>>1;pushdown(k);
if(p<=mid) return query(k<<1,p);
else return query(k<<1|1,p);
}
void split(int x){
int nxt=*st.lower_bound(x);
if(nxt==x) return;st.insert(nxt);
change_v(1,x,query(1,nxt));st.insert(x);
}
int main(){
pw42[0]=1;for(int i=1;i<=LOG_42;i++) pw42[i]=pw42[i-1]*42ll;
scanf("%d%d",&n,&qu);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]),st.insert(i);
build(1,1,n);
while(qu--){
int opt;scanf("%d",&opt);
if(opt==1){int x;scanf("%d",&x);printf("%lld\n",query(1,*st.lower_bound(x)));}
else if(opt==2){
int l,r,v;scanf("%d%d%d",&l,&r,&v);
if(l>1) split(l-1);split(r);
st.erase(st.lower_bound(l),st.lower_bound(r));
if(l<r) assign(1,l,r-1,INF);
change_v(1,r,v);
} else {
int l,r,v;scanf("%d%d%d",&l,&r,&v);
if(l>1) split(l-1);split(r);
do {
add(1,l,r,-v);killneg(1);
} while(s[1].v==0);
}
}
return 0;
}
/*
6 13
40 1700 7 1672 4 1722
3 2 4 42
1 2
1 3
1 4
3 2 6 50
1 2
1 4
1 6
2 3 4 41
3 1 5 1
1 1
1 3
1 5
*/
Codeforces 679E - Bear and Bad Powers of 42(线段树+势能分析)的更多相关文章
- codeforces 679e Bear and Bad Powers of 42
传送门:http://codeforces.com/contest/679/problem/E 题目意思很清晰,给你一个序列,要求你完成以下三个操作: 1.输出A[i] 2.将[a,b]区间的所有数字 ...
- Lucky Array Codeforces - 121E && Bear and Bad Powers of 42 Codeforces - 679E
http://codeforces.com/contest/121/problem/E 话说这题貌似暴力可A啊... 正解是想出来了,结果重构代码,调了不知道多久才A 错误记录: 1.线段树搞混num ...
- DZY Loves Colors CodeForces - 444C (线段树势能分析)
大意:有$n$个格子, 初始$i$位置的颜色为$i$, 美丽值为0, 有两种操作 将区间$[l,r]$内的元素全部改为$x$, 每个元素的美丽值增加$|x-y|$, $y$为未改动时的值 询问区间$[ ...
- CF679E Bear and Bad Powers of 42
一段时间不写线段树标记,有些生疏了 codeforces 679e Bear and Bad Powers of 42 - CHADLZX - 博客园 关键点是:42的次幂,在long long范围内 ...
- [Codeforces 464E] The Classic Problem(可持久化线段树)
[Codeforces 464E] The Classic Problem(可持久化线段树) 题面 给出一个带权无向图,每条边的边权是\(2^{x_i}(x_i<10^5)\),求s到t的最短路 ...
- Codeforces679E. Bear and Bad Powers of 42
传送门 今天子帧的一套模拟题的T3. 考试的时候其实已经想到了正解了,但是一些地方没有想清楚,就没敢写,只打了个暴力. 首先考虑用线段树维护区间信息. 先把每个值拆成两个信息,一是距离他最近的且大于他 ...
- Educational Codeforces Round 6 E. New Year Tree dfs+线段树
题目链接:http://codeforces.com/contest/620/problem/E E. New Year Tree time limit per test 3 seconds memo ...
- Codeforces Round #244 (Div. 2) B. Prison Transfer 线段树rmq
B. Prison Transfer Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/pro ...
- codeforces 893F - Physical Education Lessons 动态开点线段树合并
https://codeforces.com/contest/893/problem/F 题意: 给一个有根树, 多次查询,每次查询对于$x$i点的子树中,距离$x$小于等于$k$的所有点中权值最小的 ...
随机推荐
- jmeter基础功能及认识
1.基础知识: JMeter是免费开源的,纯java开发的性能测试工具,可以测试静态和动态的资源,例如:静态文件.java服务小程序.CGI脚本.java对象.数据库.FTP服务器.邮件服务器和Per ...
- JVM:内存模型
JVM:内存模型 说明:这是看了 bilibili 上 黑马程序员 的课程 JVM完整教程 后做的笔记 1. java 内存模型 很多人将[java 内存结构]与[java 内存模型]傻傻分不清,[j ...
- [对对子队]会议记录4.20(Scrum Meeting11)
今天已完成的工作 何瑞 工作内容:搭建第三关,添加了运行指令标识 相关issue:搭建关卡2.3 相关签入:4.20签入1 4.20签入2 吴昭邦 工作内容:搭建第三关 相关iss ...
- 手把手教你学Dapr - 2. 必须知道的概念
Sidecar 边车 Dapr API提供Http和gRPC两种通讯方式. 运行方式则可以是容器也可以是进程(Windows开发推荐使用Self Hosted,后续会解释). 这样的好处是与运行环境无 ...
- 简明教程 | Docker篇 · 其二:Dockerfile的编写
Dockerfile是什么 一个包含用于组合 image 的命令的文本文件,docker 通过 dockerfile 和构建环境的上下文来构建 image . 编写Dockerfile FROM 首先 ...
- Linux下Zabbix5.0 LTS监控基础原理及安装部署(图文教程)
Zabbix 是什么? zabbix 是一个基于 Web 界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案.通过 C/S 模式采集数据,通过 B/S 模式在 Web 端展示和配置,能监视 ...
- Spring---IoC(控制反转)原理学习笔记【全】
1.IoC创建对象的方式 使用无参构造创建对象 假如要使用有参构造创建: 下标赋值constructor-arg <!--有参--> <bean id="User" ...
- P1231 教辅的组成(最大流)
P1231 教辅的组成 这个题一看便知是网络流量,(三分图??滑稽..) 就一个小细节,如果我们仅仅将所有的点分成三部分跑网络流的话会有点小问题.. 因为这可能导致一本书被重复利用,就是有两条流经过同 ...
- hdu 2159 FATE(DP)
题意: 小余玩游戏,离最后一级还需n的经验值,但是他已经很厌烦了,还剩下m的忍耐度.每杀一只怪小余会得到相应的经验,同时减掉相应的忍耐度. 当忍耐度降到0或者0以下时,小余就不会再玩这个游戏.小余还说 ...
- Fiddler抓包工具简介:(三)手机端代理配置
1.接入网络:需要在移动终端(手机或pad)上指定代理服务器为Fiddler所在主机的IP,端口默认为8888,要保证手机和安装有fiddler的电脑处在同一局域网内,手机能ping通电脑. [方法] ...