学军中学csp-noip2020模拟5
Problem List(其实这几场全是附中出的)
这场比赛的题目相当有价值,特别是前两题,相当的巧妙。
A.路径二进制
数据范围这么小,当然是搜索。
\(30pts:\)大力搜索出奇迹,最后统计答案的时候拿一个桶存一下已经统计了哪些数,由于\(d<=20\),所以\(result<=2^20\),所以还是存的下的。
\(60pts:\)我们发现重复状态其实非常之多,我们加上一个记忆化进行剪枝:\(vis[i][t][S]\)表示\(i\)号点、时间是\(t\)、当前数是\(S\)是否已经访问过,如果已经访问过那就可以回溯了。时间复杂度和空间复杂度都是\(O(nd2^d)\)的,时间上可以过满数据,但是空间会被卡。
\(100pts:\)相当巧妙的方法来优化空间:我们在搜索时进行折半,只从一开始搜索长度为\(\frac{1}{2}d\)的链并用状压存下是否可达存下来,然后分别在每个点往外搜索长度为\(\frac{1}{2}d\)的链并状压存下,最后遍历每个点暴力合并前后两段就可以了。空间复杂度是\(n^22^{\frac{1}{2}d}+2^d\)的,时间是\(n^22^d\)的。
B.停车场
\(20pts:\)悬线法可以解决静态的平面最大全0矩阵问题。当然也可以用\(DP\)解决:设\(f_{i,j}\)为在结点\((i,j)\)向左上能延伸的最大方形的边长,\(h_{i,j}\)为向上能有多少个空位,\(r_{i,j}\)是向左的空位,于是得到\(f_{i,j}=min\{r_{i,j},h_{i,j},f_{i-1,j-1}+1\$。复杂度\)O(n^2m)$。
\(70pts:\)你会发现没有这一档部分分,这个是我考场上乱搞搞出来的分数。你会发现一个神奇的性质:
假设我们要在\(now\)这个点放一辆车,那么它只会对它右下角的点的\(DP\)值产生影响,并且下面这种已经放过车的右下方的位置的\(DP\)值也没有影响,所以我们要更新的点的数量就比较有限了。关于如何遍历这个奇形怪状的东西,我们只需要一行一行枚举,存一下当前遇到的最左边的车的横坐标,以后便利的横坐标都要小于这个值就行了)。另外我们要动态查询\(f\)的最大值,这个东西用一棵权值线段树当成平衡树跑就可以实现\(log\)级别,所以总的时间复杂度最劣是\(O(n^2dlogn)\)的,但是只要随机它能飞起来。
\(100pts:\)简直精妙到不得了的,时间复杂度应该是最劣\(n^2logn+mn\)的。答案显然是递减的,并且答案的值域就只有\([1,2000]\),还是满足决策单调性的!这就使人浮想联翩了。由于加上一辆车可能会破坏很多答案,破坏性质不优美,即使用平衡树维护啥的都很吃力,所以我们反过来想:我们移走一辆车,看看包括它的矩形最大是多少的,这个时候两个答案取\(max\)是满足交换律的,相当优美。
但是光光这样还是相当困难。我们再加上一个小小的转换:记录上一次的答案是\(lastans\),那么我这次就依次验证有没有矩形包含这个新空格且大小为\(lastans+1\)、\(lastans+2\)······直到不合法为止。这个可以用平衡树来解决:设\(r1_{i,j}\)、\(r2\)、\(r3\)、\(r4\)分别是它向四个方向能延伸多少,那么我在指定空格的那个纵列上依次扫下来,看看这个高度为\(lastans+1\)的窗口内的向左、向右的最小值加起来是否能够大于等于\(lastans+1\)。显然一个空格只会影响它所在的那一横一竖的\(r\),暴力修改即可。
它的时间复杂度显然是均摊的,最劣是\(n^2logn+mn\),据说用并查集可以优化到\(n^2\alpha\)的。
这启发我们在答案值域很小、满足单调性和决策单调性的时候可以使用反过来的、判定性的方法解决问题。
学军中学csp-noip2020模拟5的更多相关文章
- 2016 Multi-University Training Contest 8 solutions BY 学军中学
1001: 假设有4个红球,初始时从左到右标为1,2,3,4.那么肯定存在一种方案,使得最后结束时红球的顺序没有改变,也是1,2,3,4. 那么就可以把同色球都写成若干个不同色球了.所以现在共有n个颜 ...
- Java多线程 编写三各类Ticket、SaleWindow、TicketSaleCenter分别代表票信息、售票窗口、售票中心。 售票中心分配一定数量的票,由若干个售票窗口进行出售,利用你所学的线程知识来模拟此售票过程。
package com.swift; import java.util.ArrayList; import java.util.HashMap; import java.util.List; impo ...
- 学军NOIP2016模拟赛1
GTMD这么水的一套题没有AK T1:妥妥的二分答案,贪心check. T2:问题可以转化为最长上升(还是下降我记不住了)子序列. T3:发现点被覆盖上的顺序是一定的.求出这个顺序,第一个操作在线段树 ...
- 学军NOI训练13 T3 白黑树
唉,大学军有自己的OJ就是好,无限orz 只有周六的比赛是开放的囧,这场比赛最后因为虚拟机卡住没有及时提交…… 否则就能让大家看到我有多弱了…… 前两题题解写的很详细,可以自己去看,我来随便扯扯T3好 ...
- 2019学军集训记&PKUWC2020游记
题解:https://www.cnblogs.com/gmh77/p/12051260.html 集训(×) 被虐(√) Day1 二段考 Day2 绝对不鸽 没那回事 还在路上 其实就是咕了两天 晚 ...
- NOIP2020 模拟赛 B 组 Day6
非常巧妙的一场模拟赛,比较偏向于 Atcoder 的风格,考场上做出了 A .C 两题. A. 礼物购买 排完序后一个个礼物地枚举时间复杂度是\(\Theta(nm)\)的,不能接受.但是注意到,若当 ...
- 从零开始学Python04作业思路:模拟ATM电子银行
标签(空格分隔):Python 一,程序文件说明 程序分为5个组成部分 bin:放置Python程序的启动接口文件 通过Python命令启动文件夹内文件即正常执行Python程序 例如:ATM_sta ...
- 20150127 学军集训 day1
day1 就直接考试... 和说好的不一样啊 第一题看都没怎么看就pass了,构造的题我一向没什么把握.然后瞟到第三题有30分可做,虽然要写的代码很大...反正我是写习惯了..期间纠结了一会还写了一个 ...
- ZJOI2019Round#1
考的这么差二试基本不用去了 不想说什么了.就把这几天听课乱记的东西丢上来吧 这里是二试乱听课笔记ZJOI2019Round#2 ZJOI Round#1 Day1 M.<具体数学>选讲 罗 ...
随机推荐
- SpringCloud-初见
目录 前言 微服务概述 微服务与微服务架构 微服务优缺点 微服务技术栈 为什么选择SpringCloud作为微服务架构 SpringCloud入门 SpringCloud和SpringBoot的关系 ...
- 【二食堂】Beta - 事后分析
事后分析 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? Beta阶段我们首先要对文本标注方式进行优化,其次时添加好友系统,实现邀请好友共同标注的功能. ...
- [技术博客] 敏捷软工——JavaScript踩坑记
[技术博客] 敏捷软工--JavaScript踩坑记 一.一个令人影响深刻的坑 1.脚本语言的面向对象 面向对象特性是现代编程语言的基本特性,JavaScript中当然集成了面向对象特性.但是Java ...
- OO_JAVA_四个单元的总结
总结本单元两次作业的架构设计 设计目标 尽量减少特殊容器的存在,能通用就通用,减少重复的类同代码. 基础容器的存在,就是为上述目标而服务的. 设计概要 底层:基础的.类型无关.无依赖的容器以及对应的查 ...
- 【Azure Redis 缓存】Windows版创建 Redis Cluster 实验 (精简版)
简介 学习Redis Cluster的第一步,即本地搭建Redis Cluster.但是在Redis的官方文档中,是介绍在Linux系统中搭建Redis Cluster.本文主要介绍在Windows系 ...
- pyinstaller和wordcloud和jieba的使用案列
一.pyinstaller库 1.简介 pyinstaller库:将脚本程序转变为可执行(.exe)格式的第三方库 注意:需要在.py文件所在目录进行以下命令,图标扩展名是.ico 2.格式: pyi ...
- VirtualBox问题解决合集 - [drm:vmw_host_log [vmwgfx]] *ERROR* Failed to send host log message
转载:https://blog.csdn.net/mychangee/article/details/104954262 问题描述:[drm:vmw_host_log [vmwgfx]] ERROR ...
- Ubuntu mysql安装与使用
Ubuntu 下安装 mysql 运行下面的shell代码 #安装mysql sudo apt-get -y install mysql-server sudo apt-get -y install ...
- Vue 之 Mixins (混入)的使用
是什么 混入 (mixins): 是一种分发 Vue 组件中可复用功能的非常灵活的方式.混入对象可以包含任意组件选项.当组件使用混入对象时,所有混入对象的选项将被合并到组件本身,也就是说父组件调用混入 ...
- vs Code配置C++运行和调试环境以及相关问题
vs Code配置C++运行和调试环境以及相关问题 第一步:下载c++插件 第二步:安装编译.调试环境 如果没有Dev-C++下载MinGW 下载地址:https://sourceforge.net/ ...