Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

Input

The input contains several test cases.
The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit neighbour i.

The last test case is followed by two zeros.

Output

For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets). If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.

Sample Input

4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0

Sample Output

3 5
2 3 4

和另一道题有相似的地方

但是修改过代码再提交一直WA

看了别人的代码,样例输出和我写的是一样的但是不知道为什么,我写的一直WA

 1 #include<iostream>
2 #include<cstdlib>
3 #include<cstdio>
4 #include<cstring>
5 #include<algorithm>
6 #include<cmath>
7 using namespace std;
8 int a[100000] , mod[100000] ;
9 int main()
10 {
11 int c , n ;
12 while ( scanf("%d%d",&c,&n) , c || n )
13 {
14 int i , j ;
15 for ( i = 0 ; i < n ; i ++ )
16 scanf("%d",&a[i]) , mod[i] = -2 ;//将mod初始化为-2
17 mod[0]=-1 ;//mod[0]为-1,就是假设存在a[-1],且a[-1]是n的倍数,这样就可以把两种情况写在一起
18 __int64 sum = 0 ;//直接用sum,省去了另开数组的空间
19 for ( i = 0 ; i < n ; i ++ )
20 {
21 sum += a[i] ;
22 if ( mod [ sum % c ] != -2 )
23 {//如果在i之前有与sum对n同余的数,则可以输出答案,
24 for ( j = mod [ sum % c ] + 1 ; j <= i ; j ++ )
25 {
26 cout<<j+1;
27 if ( i != j )
28 cout<<' ';
29 }
30 cout<<endl;
31 break;
32 }
33 mod [sum%c] = i ;//记录余数对应的是i
34 }
35 }
36 return 0;
37 }

C - 抽屉 POJ - 3370 (容斥原理)的更多相关文章

  1. B - 抽屉 POJ - 2356 (容斥原理)

    The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of that numbers ...

  2. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  3. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...

  4. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6631   Accepted: 2448 ...

  5. poj 2773(容斥原理)

    容斥原理入门题吧. Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9798   Accepted: 3 ...

  6. Poj 3370

    题目传送门:https://vjudge.net/problem/POJ-3370 题意:在n个数中找K个数使得他们的和为c的倍数. 题解:抽屉原理,同poj 2356 只不过写法上有所简化. 简化版 ...

  7. [POJ 3370] Halloween treats

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7143   Accepted: 2641 ...

  8. poj 3370 鸽笼原理知识小结

    中学就听说过抽屉原理,可惜一直没机会见识,现在这题有鸽笼原理的结论,但其实知不知道鸽笼原理都可以做 先总结一下鸽笼原理: 有n+1件或n+1件以上的物品要放到n个抽屉中,那么至少有一个抽屉里有两个或两 ...

  9. POJ 2356 && POJ 3370 鸽巢原理

    POJ 2356: 题目大意: 给定n个数,希望在这n个数中找到一些数的和是n的倍数,输出任意一种数的序列,找不到则输出0 这里首先要确定这道题的解是必然存在的 利用一个 sum[i]保存前 i 个数 ...

随机推荐

  1. Docker 一键安装及Docker管理面板Portainer中文汉化

       前言 Docker接触了一段时间了,批量操作过程中感觉太繁琐,所以找到了好评率比较高的Portainer面板,使用后感觉的确不错所以准备拿出来精力来做个汉化版,过程中发现词条非常多,所以暂时先汉 ...

  2. 后端程序员之路 41、BlockingQueue

    BlockingQueue,阻塞队列,常用于实现生产者和消费者模型特点:1.队列为空时,取操作会等到队列有数据2.队列满时,存操作会等到队列可用 基于C++11的阻塞队列简单实现 - Cynric 的 ...

  3. Snort + Barbyard2 + Snorby环境搭建

    1.环境 ubuntu-14.04.5 daq-2.0.7 Snort-2.9.15.1 Barbyard2 snorby Mysql Docker 2.架构 3.安装步骤 Ubuntu配置 如果是刚 ...

  4. LeetCode-层数最深叶子结点的和

    层数最深叶子结点的和 LeetCode-1302 这里可以采用上一题中求解二叉树的深度的方法. 因为需要记录最深结点的值的和,所以这里可以边求和,如果遇到不符合最深结点时再将和sum=0. /** * ...

  5. CTF-杂项笔记

                01 赛题解答 (1)目标:了解modbus协议 (2)解题: 密文:666C61677B4533334237464438413342383431434139363939454 ...

  6. FreeBSD 12.2 已经发布 从现有版本更新到12

    #freebsd-update -r 12.2-RELEASE upgrade 如果提示更新第三方软件后,再执行freebsd-update install , 请输入 #pkg update &am ...

  7. P2731 骑马修栅栏 Riding the Fences 题解(欧拉回路)

    题目链接 P2731 骑马修栅栏 Riding the Fences 解题思路 存图+简单\(DFS\). 坑点在于两种不同的输出方式. #include<stdio.h> #define ...

  8. C# 8 - Nullable Reference Types 可空引用类型

    在写C#代码的时候,你可能经常会遇到这个错误: 但如果想避免NullReferenceException的发生,确实需要做很多麻烦的工作. 可空引用类型 Null Reference Type 所以, ...

  9. SpringBoot-02 运行原理初探

    SpringBoot-02 运行原理初探 本篇文章根据b站狂神编写 pom.xml 2.1.父依赖 其中它主要是依赖一个父项目,主要是管理项目的资源过滤及插件! <parent> < ...

  10. Centos7下安装JDK详细过程记录

    1.查询系统是否安装了java: [root@bogon ~]# java -version 根据上图显示,系统默认安装了Openjdk,它和我们使用的java jdk有些区别(具体的可度娘),所以需 ...