Matrix Chain Multiplication UVA - 442
Suppose you have to evaluate an expression like ABCDE where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.
For example, let A be a 5010 matrix, B a 1020 matrix and C a 205 matrix. There are two different strategies to compute ABC, namely (AB)C and A(B*C).
The first one takes 15000 elementary multiplications, but the second one only 3500.
Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.
Input
Input consists of two parts: a list of matrices and a list of expressions.
The first line of the input file contains one integer n (1 ≤ n ≤ 26), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.
The second part of the input file strictly adheres to the following syntax (given in EBNF):
SecondPart = Line { Line } < EOF>
Line = Expression < CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"
Output
For each expression found in the second part of the input file, print one line containing the word ‘error’ if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.
Sample Input
9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))
Sample Output
0
0
0
error
10000
error
3500
15000
40500
47500
15125
HINT
使用map来记录矩阵,使用栈来存入数组。思路很简单,直接看代码就好。
注意:每一次做乘法计数的时候偶要判断是不是字母,否则会出错!!!
Accepted
#include<iostream>
#include<algorithm>
#include<map>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
using namespace std;
int main()
{
map<string, vector<int>>M;
long long int sum = 0;
int n,a,b;
string t,s;
cin >> n;
while (n--) {
cin >> t >> a >> b;
M[t].push_back(a);
M[t].push_back(b);
}
getchar(); //
while (getline(cin, s)) {
stack<int>list;
sum = 0;
if (s.length() == 1)cout << 0 << endl;
else {
for (int i = 0;i < s.length();i++) {
if (s[i] == '(')continue;
if (s[i] == ')') { //计算
b = list.top();list.pop();
a = list.top();list.pop();
if (a != list.top()) { cout << "error" << endl;sum = -1;break; }
list.pop();
sum += a * b * list.top();
list.push(b);
}
else { //入栈
t = s[i];
list.push(M[t][0]);
list.push(M[t][1]);
}
}
if (sum != -1) cout << sum << endl;
}
}
}
Matrix Chain Multiplication UVA - 442的更多相关文章
- UVA 442 二十 Matrix Chain Multiplication
Matrix Chain Multiplication Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %l ...
- 例题6-3 Matrix Chain Multiplication ,Uva 442
这个题思路没有任何问题,但还是做了近三个小时,其中2个多小时调试 得到的经验有以下几点: 一定学会调试,掌握输出中间量的技巧,加强gdb调试的学习 有时候代码不对,得到的结果却是对的(之后总结以下常见 ...
- UVA——442 Matrix Chain Multiplication
442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...
- UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)
意甲冠军 由于矩阵乘法计算链表达的数量,需要的计算 后的电流等于行的矩阵的矩阵的列数 他们乘足够的人才 非法输出error 输入是严格合法的 即使仅仅有两个相乘也会用括号括起来 并且括号中 ...
- Matrix Chain Multiplication[HDU1082]
Matrix Chain Multiplication Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- UVa442 Matrix Chain Multiplication
// UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...
- Matrix Chain Multiplication(表达式求值用栈操作)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1082 Matrix Chain Multiplication Time Limit: 2000/100 ...
- ACM学习历程——UVA442 Matrix Chain Multiplication(栈)
Description Matrix Chain Multiplication Matrix Chain Multiplication Suppose you have to evaluate ...
- UVa 442 (栈) Matrix Chain Multiplication
题意: 给出一个矩阵表达式,计算总的乘法次数. 分析: 基本的数学知识:一个m×n的矩阵A和n×s的矩阵B,计算AB的乘法次数为m×n×s.只有A的列数和B的行数相等时,两个矩阵才能进行乘法运算. 表 ...
随机推荐
- 微信小程序:事件绑定
小程序中绑定事件,通过bind关键字来实现.如bindinput,bindtap(绑定点击事件),bindchange等. 什么是事件 事件是视图层到逻辑层的通讯方式. 事件可以将用户的行为反馈到逻辑 ...
- 生成pdf phantomjs
注:原创文件,转载请注明出处 使用phantomjs生成还原度比较高的pdf文件,理论上生成word也可以,因需求没有做这块要求,功课留给大家去做了. 下载 https://phantomjs.org ...
- Java流程控制:循环结构
一.简介 顺序结构的程序语句只能被执行一次,如果您想要同样的操作执行多次,就需要使用循环结构. Java中有三种主要的循环结构: 'while'循环 'do...while'循环 'for'循环 在J ...
- 少走弯路之marshalsec的编译(RMI必备工具)
0x00 实验环境 实验机:Ubuntu18(公网Linux系统) 0x01 安装包 私聊我博客将会第一时间提供安装包环境: 0x02 避坑指南 由上篇文章:https://www.cnblo ...
- 记录 Allsec 解题过程
开局打开URL:http://119.3.191.245:65532/#/allsecPlayGame,前去做游戏 游戏URL:http://119.3.191.245:8877/Login.php ...
- 基于es实现一个简单的搜索引擎
一.什么是es Elasticsearch是一个基于ApacheLucene(TM)的开源搜索引擎.无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进.性能最好的.功能最全的搜索引擎库.但 ...
- FreeBSD 如何安装软件
1:概括FreeBSD捆绑了丰富的系统工具集合作为基础系统的一部分.此外,FreeBSD提供了两种用于安装第三方软件的补充技术:FreeBSD Ports Collection,用于从源代码安装,以及 ...
- 翻译:《实用的Python编程》05_01_Dicts_revisited
目录 | 上一节 (4.4 异常) | 下一节 (5.2 封装) 5.1 再谈字典 Python 对象系统主要基于字典实现.本节将对此进行讨论. 字典 字典是命名值(named values)的集合. ...
- 小技巧!CSS 整块文本溢出省略特性探究
今天的文章很有意思,讲一讲整块文本溢出省略打点的一些有意思的细节. 文本超长打点 我们都知道,到今天(2020/03/06),CSS 提供了两种方式便于我们进行文本超长的打点省略. 对于单行文本,使用 ...
- Memory Networks02 记忆网络经典论文
目录 1 Recurrent Entity Network Introduction 模型构建 Input Encoder Dynamic Memory Output Model 总结 2 hiera ...