Wireshark(三):应用Wireshark IO图形工具分析数据流
原文出处: EMC中文支持论坛
基本IO Graphs:
IO graphs是一个非常好用的工具。基本的Wireshark IO
graph会显示抓包文件中的整体流量情况,通常是以每秒为单位(报文数或字节数)。默认X轴时间间隔是1秒,Y轴是每一时间间隔的报文数。如果想要查看
每秒bit数或byte数,点击“Unit”,在“Y
Axis”下拉列表中选择想要查看的内容。这是一种基本的应用,对于查看流量中的波峰/波谷很有帮助。要进一步查看,点击图形中的任意点就会看到报文的细
节。
为了讲解方便,点击示例报文包,或用自己的wireshark点击Statistics – IO Graphs。这个抓包是HTTP下载遇到报文丢失的情况。
注意:过滤条件为空,此图形显示所有流量。
这个默认条件下的显示在大多数troubleshooting中并不是非常有用。将Y轴改为bits/tick这样就可以看到每秒的流量。从这张图
可以看到峰值速率是300kbps左右。如果你看到有些地方流量下降为零,那可能是一个出问题的点。这个问题在图上很好发现,但在看报文列表时可能不那么
明显。
过滤:
每一个图形都可以应用一个过滤条件。这里创建两个不同的graph,一个HTTP一个ICMP。可以看到过滤条件中Graph 1使用“http”Graph 2使用“icmp”。图中可以看到红色ICMP流量中有些间隙,进一步分析。
创建两个图形,一个显示ICMP Echo(Type=8)一个显示ICMP Reply(Type=0)。正常情况下对于每一个echo请求会有一个连续的reply。这里的情况是:
可以看到红色脉冲线(icmp type==0 – ICMP Reply)中间有间隙,而整张图中ICMP请求保持连续。这意味着有些reply没有接收到。这是由于报文丢失导致的reply drop。CLI中看到的ping信息如下:
常用排错过滤条件:
对于排查网络延时/应用问题有一些过滤条件是非常有用的:
tcp.analysis.lost_segment:表明已经在抓包中看到不连续的序列号。报文丢失会造成重复的ACK,这会导致重传。
tcp.analysis.duplicate_ack:显示被确认过不止一次的报文。大凉的重复ACK是TCP端点之间高延时的迹象。
tcp.analysis.retransmission:显示抓包中的所有重传。如果重传次数不多的话还是正常的,过多重传可能有问题。这通常意味着应用性能缓慢和/或用户报文丢失。
tcp.analysis.window_update:将传输过程中的TCP window大小图形化。如果看到窗口大小下降为零,这意味着发送方已经退出了,并等待接收方确认所有已传送数据。这可能表明接收端已经不堪重负了。
tcp.analysis.bytes_in_flight:某一时间点网络上未确认字节数。未确认字节数不能超过你的TCP窗口大小(定义于最初3此TCP握手),为了最大化吞吐量你想要获得尽可能接近TCP窗口大小。如果看到连续低于TCP窗口大小,可能意味着报文丢失或路径上其他影响吞吐量的问题。
tcp.analysis.ack_rtt:衡量抓取的TCP报文与相应的ACK。如果这一时间间隔比较长那可能表示某种类型的网络延时(报文丢失,拥塞,等等)。
在抓包中应用以上一些过滤条件:
注意:Graph 1是HTTP总体流量,显示形式为packets/tick,时间间隔1秒。Graph 2是TCP丢失报文片段。Graph 3是TCP 重复ACK。Graph 4是TCP重传。
从这张图可以看到:相比于整体HTTP流量,有很多数量的重传以及重复ACK。从这张图中,可以看到这些事件发生的时间点,以及在整体流量中所占的比例。
函数:
IO Graphs有六个可用函数:SUM, MIN, AVG, MAX, COUNT, LOAD。
MIN( ), AVG( ), MAX( )
首先看一下帧之间的最小,平均和最大时间,这对于查看帧/报文之间的延时非常有用。我们可以将这些函数结合“frame.time_delta”过滤条件看清楚帧延时,并使得往返延时更为明显。如果抓包文件中包含不同主机之间的多个会话,而只想知道其中一个pair,可将“frame.time_delta”结合源和目标主机条件如“ip.addr==x.x.x.x &&ip.addr==y.y.y.y”。如下图所示:
我们做了以下步骤:
- 将Y轴设置为“Advanced”,让Caculation域可见。不做这一步就看不到计算选项。
- X轴时间间隔1秒,所以每个柱状图代表1秒间隔的计算结果。
- 过滤出两个特定IP地址的HTTP会话,使用条件:“(ip.addr==192.168.1.4&& ip.addr==128.173.87.169) && http”。
- 使用3个不同的graph,分别计算Min(), Avg(), Max()。
- 对每一个计算结果应用条件“frame.time_delta”,将style设置成“FBar”,显示效果最佳。
从上图可见,在第106秒时数据流的MAX
frame.delta_time达到0.7秒,这是一个严重延时并且导致了报文丢失。如果想要深入研究,只需要点击图中这一点,就会跳转至相应帧。对应
于本例抓包文件中第1003个报文。如果你看见帧之间平均延时相对较低但突然某一点延时很长,可点击这一帧,看看这一时间点究竟发生了什么。
Count( )
此函数计算时间间隔内事件发生的次数,在查看TCP分析标识符时很有用,例如重传。例图如下:
Sum( )
该函数统计事件的累加值。有两种常见的用例是看在捕获TCP数据量,以及检查TCP序列号。让我们看看第一个TCP长度的例子。创建两个图,一个使
用客户端IP
192.168.1.4为源,另一个使用客户端IP作为一个目的地址。每个图我们将sum()功能结合tcp.len过滤条件。拆分成两个不同的图我们就
可以看到在一个单一的方向移动的数据量。
从图表中我们可以看到,发送到客户端的数据量(IP.DST = =
192.168.1.4过滤条件)比来自客户端的数据量要高。在图中红色表示。黑条显示从客户端到服务器的数据,相对数据量很小。这是有道理的,因为客户
只是请求文件和收到之后发送确认数据,而服务器发送大文件。很重要的一点是,如果你交换了图的顺序,把客户端的IP作为图1的目标地址,并且客户端IP作
为图2的源地址,采用了FBAR的时候可能看不到正确的数据显示。因为图编号越低表示在前台显示,可能会覆盖较高图号。
现在让我们看一下同一个数据包丢失和延迟的TCP序列号。
可以在图中看到若干峰值和下降,表示TCP传输有问题。与正常TCP报文比较:
这张图可以看到TCP序列号相当稳定地增加,表示传输平稳,没有过多重传或丢包。
Wireshark(三):应用Wireshark IO图形工具分析数据流的更多相关文章
- 一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流
基本IO Graphs: IO graphs是一个非常好用的工具.基本的Wireshark IO graph会显示抓包文件中的整体流量情况,通常是以每秒为单位(报文数或字节数).默认X轴时间间隔是1秒 ...
- 网络基础知识(一)wireshark 三次握手实践
wireshark 三次握手简介 192.168.18.120 IP地址为我的本机虚拟机IP地址 过滤设置:ip.addr == 192.168.18.120 (ip.addr == 192.168. ...
- Wireshark分析器分析数据流过程
Wireshark分析器分析数据流过程 分析包是Wireshark最强大的功能之一.分析数据流过程就是将数据转换为可以理解的请求.应答.拒绝和重发等.帧包括了从捕获引擎或监听库到核心引擎的信息.Wir ...
- wireshark系列之wireshark简介
前言:为什么要学wireshark?工欲善其事必先利其器,wireshark是一款工具软件,主要作用是抓取数据封包,可以帮助我们更加直观更加具象的学习各种网路协议(http.TLS.TCP.UDP.I ...
- jboss7访问日志功能及使用goaccess工具分析
网络上虽然很多文章分别讲到jboss7的访问日志如何配置,goaccess工具怎么分析nginx/tomcat等日志.但将两者放在一起即“通过goaccess分析jboss访问日志”的倒是没搜索到. ...
- Centos下的IO监控与分析
近期要在公司内部做个Linux IO方面的培训, 整理下手头的资料给大家分享下 各种IO监视工具在Linux IO 体系结构中的位置 源自 Linux Performance and Tuni ...
- Git 系列(五):三个 Git 图形化工具
在本文里,我们来了解几个能帮你在日常工作中舒服地用上 Git 的工具. 我是在这许多漂亮界面出来之前学习的 Git,而且我的日常工作经常是基于字符界面的,所以 Git 本身自带的大部分功能已经足够我用 ...
- Linux下的IO监控与分析
Linux下的IO监控与分析 近期要在公司内部做个Linux IO方面的培训, 整理下手头的资料给大家分享下 各种IO监视工具在Linux IO 体系结构中的位置 源自 Linux Performan ...
- 【转载】Linux下的IO监控与分析
近期要在公司内部做个Linux IO方面的培训, 整理下手头的资料给大家分享下 各种IO监视工具在Linux IO 体系结构中的位置 源自 Linux Performance and Tuning G ...
随机推荐
- Centos8 Docker部署 .Net6 项目
.Net6项目发布 1.在VS中发布项目,并编写好Dockerfile文件 Dockerfile文件内容如下: FROM mcr.microsoft.com/dotnet/aspnet:6.0 AS ...
- 多线程07.thread-join
package com.wangwenjun.concurrency.chapter5; public class ThreadJoin3 { public static void main(Stri ...
- 17 款程序员必备 Chrome扩展插件,爱了爱了!
整理:小哈学Java 目录 美化 Just Black 午夜黑官方主题 Dark Reader 暗黑主题 为什么你们就是不能加个空格呢? 标签管理 Momentum [新标签页] Tab Manage ...
- Go语言核心36讲(Go语言实战与应用十八)--学习笔记
40 | io包中的接口和工具 (上) 我们在前几篇文章中,主要讨论了strings.Builder.strings.Reader和bytes.Buffer这三个数据类型. 知识回顾 还记得吗?当时我 ...
- 【NOIP 2018】摆渡车
前情提要 是的 我终于回来补坑了 一年了哇 你这个鸽子王 斜率优化版本 今天在复习斜率优化的时候才想起来这个题 定义就不设了 大家想看可以看上面那个原版 怎么斜率优化呢? 我们考虑\(i\)点是当前的 ...
- [USACO07NOV]Cow Relays G
题目大意 给出一张无向连通图(点数小于1000),求S到E经过k条边的最短路. 算法 这是之前国庆模拟赛的题 因为懒 所以就只挑一些题写博客 在考场上写了个dp 然后水到了50分 出考场和神仙们一问才 ...
- 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)
洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...
- SUNTANS 及 FVCOM 对流扩散方程求解简介[TBC]
最近接到一个任务,就是解决FVCOM中对流扩散计算不守衡问题.导师认为是其求解时候水平和垂向计算分开求解所导致的,目前我也没搞清到底有什么问题,反正就是让把SUNTANS的对流扩散计算挪到FVCOM中 ...
- rust shadow
1 fn main() { 2 let mut demo = 12; 3 println!("{}",demo); 4 demo = 21; // 值可变,数据类型不可变 5 pr ...
- 65-Binary Tree Zigzag Level Order Traversal
Binary Tree Zigzag Level Order Traversal My Submissions QuestionEditorial Solution Total Accepted: 6 ...