项目 内容
课程班级博客连接 课程班级
这个作业要求连接 作业链接
我的课程学习目标 (1)详细阅读《构建之法》第1章、第2章,掌握PSP流程;
(2)设计实际程序掌握动态规划算法、回溯算法;
(3)掌握软件项目个人开发流程;
(4)掌握Github发布软件项目的操作方法。
这个作业在哪些方面帮助我实现学习目标 (1)通过点评班级博客中已提交的相关作业,让我对不同风格的作业有了客观的评价;
(2)通过使用PSP流程,对实验任务的时间安排有了一定的把握;
(3)对Github发布软件项目有了一定的认识。
项目Github的仓库链接地址 https://github.com/kangxuxu/aimer

实验内容

任务1:点评班级博客中已提交的作业

任务2:详细阅读《构建之法》第1章、第2章,掌握PSP流程

PSP流程:

  • PSP0的目的是建立个体过程基线,通过这一步,学会使用PSP的各种表格采集过程的有关数据,此时执行的是该软件开发单位的当前过程,通常包括计划、开发(包括设计、编码、编译和测试)以及后置处理三个阶段,并要作一些必要的试题,如测定软件开发时间,按照选定的缺陷类型标准、度量引入的缺陷个数和排除的缺陷个数等,用作为测量在PSP的过程中进步的基准。
  • PSP1的重点是个体计划,引入了基于估计的计划方法PROBE(PROxy Based Estimating),用自己的历史数据来预测新程序的大小和需要的开发时间,并使用线性回归方法计算估计参数,确定置信区间以评价预测的可信程度。PSP1.1增加了对任务和进度的规划。
  • PSP2的重点是个体质量管理,根据程序的缺陷善建立检测表,按照检测表进行设计复查和代码复查(有时也称"代码走查"),以便及早发现缺陷,使修复缺陷的代价最小。随着个人经验和技术的积累,还应学会怎样改进检测表以适应自己的要求。PSP2.1则论述设计过程和设计模板,介绍设计方法,并提供了设计模板、但PSP并不强调选用什么设计方法,而强调设计完备性准则和设计验证技术。

通过参考http://www.cnblogs.com/xinz/archive/2011/10/22/2220872.html和阅读《构建之法》第1章、第2章,我规划了此次PSP2.1流程:

任务内容 计划共完成需要的时间(min) 实际完成需要的时间(min)
计划 70 40
查阅相关资料 30 20
规划PSP流程 40 20
开发 480 300
编写两个算法 180 120
实现问题求解 120
排错 180 180
报告 130 110
编写博客 90 90
上传代码 10
总结流程 30 20

任务3:项目开发

  • 开发背景

    背包问题(Knapsack Problem,KP)是NP Complete问题,也是一个经典的组合优化问题,有着广泛而重要的应用背景。{0-1}背包问题({0-1}Knapsack Problem,{0-1}KP)是最基本的KP问题形式,它的一般描述为:从若干具有价值系数与重量系数的物品(或项)中,选择若干个装入一个具有载重限制的背包,如何选择才能使装入物品的重量系数之和在不超过背包载重前提下价值系数之和达到最大?

    D{0-1}KP是经典{0-1}背包问题的一个拓展形式,用以对实际商业活动中折扣销售、捆绑销售等现象进行最优化求解,达到获利最大化。D{0-1}KP数据集由一组项集组成,每个项集有3项物品可供背包装入选择,其中第三项价值是前两项之和,第三项的重量小于其他两项之和,算法求解过程中,如果选择了某个项集,则需要确定选择项集的哪个物品,每个项集的三个项中至多有一个可以被选择装入背包,D{0-1} KP问题要求计算在不超过背包载重量C的条件下,从给定的一组项集中选择满足要求装入背包的项,使得装入背包所有项的价值系数之和达到最大;D{0-1}KP instances数据集是研究 D{0-1}背包问题时,用于评测和观察设计算法性能的标准数据集;动态规划算法、回溯算法是求解D{0-1}背包问题的经典算法。

  • 需求分析

    • 核心需求是计算在不超过背包载重量 的条件下,从给定的一组项集中选择满足要求装入背包的项,使得装入背包所有项的价值系数之和达到最大;
    • 实现动态规划算法、回溯算法求解指定D{0-1} KP数据的最优解和求解时间,需要了解掌握两种算法并且会求算法运行时间;
    • 正确读入实验数据文件的有效D{0-1}KP数据,任意一组D{0-1} KP数据的最优解、求解时间和解向量可保存为txt文件或导出EXCEL文件,要求输入输出数据必须按照文件的形式进行。
  • 功能设计
    • 可正确读入实验数据文件的有效D{0-1}KP数据;
    • 能够绘制任意一组D{0-1}KP数据以重量为横轴、价值为纵轴的数据散点图;
    • 能够对一组D{0-1}KP数据按项集第三项的价值:重量比进行非递增排序;
    • 用户能够自主选择动态规划算法、回溯算法求解指定D{0-1}KP数据的最优解和求解时间(以秒为单位);
    • 任意一组D{O-1} KP数据的最优解、求解时间和解向量可保存为txt文件或导出 EXCEL文件。
  • 动态规划解决{0,1}背包问题

    • 代码块:
    def bag(n, c, w, v):
    value = [[0 for j in range(c + 1)] for i in range(n + 1)]
    for i in range(1, n + 1):
    for j in range(1, c + 1):
    value[i][j] = value[i - 1][j]
    # 背包总容量够放当前物体,遍历前一个状态考虑是否置换
    if j >= w[i - 1] and value[i][j] < value[i - 1][j - w[i - 1]] + v[i - 1]:
    value[i][j] = value[i - 1][j - w[i - 1]] + v[i - 1]
    for x in value:
    print(x)
    return value def show(n, c, w, value):
    print('最大价值为:', value[n][c])
    x = [False for i in range(n)]
    j = c
    for i in range(n, 0, -1):
    if value[i][j] > value[i - 1][j]:
    x[i - 1] = True
    j -= w[i - 1]
    print('背包中所装物品为:')
    for i in range(n):
    if x[i]:
    print('第', i+1, '个,', end='') def bag1(n, c, w, v):
    values = [0 for i in range(c+1)]
    for i in range(1, n + 1):
    for j in range(c, 0, -1):
    # 背包总容量够放当前物体,遍历前一个状态考虑是否置换
    if j >= w[i-1]:
    values[j] = max(values[j-w[i-1]]+v[i-1], values[j])
    return values
    • 测试数据:

201871030115-康旭 实验二 软件工程个人项目—《D{0-1} KP》项目报告的更多相关文章

  1. 201871030115-康旭 实验三 结对项目—《D{0-1}KP 实例数据集算法实验平台》项目报告

    项目 内容 课程班级博客链接 18卓越班 这个作业要求链接 实验三结对编程要求 我的课程学习目标 (1)体验软件项目开发中的两人合作,练习结对编程(Pair programming):(2)掌握Git ...

  2. 201871010130-周学铭 实验二 个人项目—D{0-1}问题项目报告

    项目 内容 课程班级博客链接 18级卓越班 这个作业要求链接 实验二 软件工程个人项目 我的课程学习目标 掌握软件项目个人开发流程.掌握Github发布软件项目的操作方法. 这个作业在哪些方面帮助我实 ...

  3. 201871010110-李华 实验三 结对项目—《D{0-1}KP 实例数据集算法实验平台》项目报告

    项目 内容 课程班级博客链接 班级博客 这个作业要求链接 作业要求 我的课程学习目标 (1)理解并掌握代码风格及设计规范:(2)通过任务3进行协作开发,尝试进行代码复审,在进行同伴复审的过程中体会结对 ...

  4. 201871030108-冯永萍 实验三 结对项目—《D{0-1}KP 实例数据集算法实验平台》项目报告

    实验三 软件工程结对项目 项目 内容 课程班级博客链接 https://edu.cnblogs.com/campus/xbsf/2018CST 这个作业要求链接 https://www.cnblogs ...

  5. 201871030116-李小龙 实验三 结对项目—《D{0-1}KP 实例数据集算法实验平台》项目报告

    项目 内容 课程班级博客链接 https://edu.cnblogs.com/campus/xbsf/2018CST 这个作业要求链接 https://www.cnblogs.com/nwnu-dai ...

  6. 201871030125-王芬 实验三 结对项目—《D{0-1}KP 实例数据集算法实验平台》项目报告

    实验三 软件工程结对项目 项目 内容 课程班级博客链接 https://edu.cnblogs.com/campus/xbsf/2018CST 这个作业要求链接 https://www.cnblogs ...

  7. 201871030127-王明强 实验三 结对项目—《D{0-1}KP 实例数据集算法实验平台》项目报告

    项目 内容 课程班级博客链接 18级卓越班 这个作业要求链接 实验三 软件工程结对项目 我的课程学习目标 1.熟悉PSP流程2. 熟悉github操作3.加深对D{0-1}问题的解法的理解4.熟悉ja ...

  8. 201871030114-蒋鑫 实验三 结对项目—《D{0-1}KP 实例数据集算法实验平台》项目报告

    项目 内容 课程班级博客链接☛ 班级博客 这个作业要求链接☛ 作业要求 我的课程学习目标☛ 1. 体验软件项目开发中的两人合作,练习结对编程(Pair programming).2. 掌握Github ...

  9. 201871030119-马桂婷 实验三 结对项目—《D{0-1}KP 实例数据集算法实验平台》项目报告

    项目 内容 课程班级博客 2018卓越工程师班 这个作业要求链接 实验三 软件工程结对项目 我的课程学习目标 1.体验软件项目开发中的两人合作,练习结对编程:2.掌握Github协作开发程序的操作方法 ...

随机推荐

  1. css & circle & shapes

    css & circle & shapes css-tricks circle https://css-tricks.com/the-shapes-of-css/ https://cs ...

  2. GeoJSON feature & Mapbox segments

    GeoJSON feature & Mapbox segments custom JSON format ??? { "rows": [], "props&quo ...

  3. ubuntu无法连接有线网

    问题描述: ubuntu下仅能连接无线网,不能连接有线网,在有线网的下面是没有选项可供连接. 解决方法: 编辑 /etc/network/interfaces 这个文件 将里面仅仅写两句话 auto ...

  4. [转]在ROS下使用zeroconf配置多机通信

    原文地址:http://www.corvin.cn/635.html,转载主要方便随时查阅,如有版权要求,请及时联系. 0x00 为何需要配置ROS多机通信 众所周知ROS是分布式系统,因此可以将机器 ...

  5. Java volatile 关键字底层实现原理解析

    本文转载自Java volatile 关键字底层实现原理解析 导语 在Java多线程并发编程中,volatile关键词扮演着重要角色,它是轻量级的synchronized,在多处理器开发中保证了共享变 ...

  6. Guava - LoadingCache实现Java本地缓存

    前言 Guava是Google开源出来的一套工具库.其中提供的cache模块非常方便,是一种与ConcurrentMap相似的缓存Map. 官方地址:https://github.com/google ...

  7. Redis 内存淘汰机制详解

    一般来说,缓存的容量是小于数据总量的,所以,当缓存数据越来越多,Redis 不可避免的会被写满,这时候就涉及到 Redis 的内存淘汰机制了.我们需要选定某种策略将"不重要"的数据 ...

  8. Spring MVC 配置记录

    目录 1.从pom.xml配置Maven文件开始 2.web.xml 3.springmvc-config.xml 4.controller 使用 idea 编辑器 + Maven + spring ...

  9. Hi3559AV100外接UVC/MJPEG相机实时采图设计(二):V4L2接口的实现(以YUV422为例)

    下面将给出Hi3559AV100外接UVC/MJPEG相机实时采图设计的整体流程,主要实现是通过V4L2接口将UVC/MJPEG相机采集的数据送入至MPP平台,经过VDEC.VPSS.VO最后通过HD ...

  10. WooYun-2016-199433 -phpmyadmin-反序列化-getshell

    文章参考 http://www.mottoin.com/detail/521.html https://www.cnblogs.com/xhds/p/12579425.html 虽然是很老的漏洞,但在 ...