\(\mathcal{Description}\)

  Link.

  给出含 \(n\) 个结点 \(m\) 条边的仙人掌图。\(q\) 次询问,每次询问给出一个点集 \(S\),求 \(S\) 内两两结点最短距离的最大值。

  \(n,\sum|S|\le3\times10^5\)。

\(\mathcal{Solution}\)

  圆方树 + 虚树 = 虚圆方树!

  首先,考虑对于整个仙人掌怎么求答案:建出圆方树,DP 记录子树最深结点深度,在方点处单调队列合并圆儿子的两条链贡献答案即可。

  接下来,只需要把“虚圆方树”给弄出来就好。关键即在于满足方点周围一定裹着它自己管辖的圆点的性质,那么在建虚树边时特殊考虑一下就完成啦。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>
#include <vector> #define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i ) inline char fgc() {
static char buf[1 << 17], *p = buf, *q = buf;
return p == q && ( q = buf + fread( p = buf, 1, 1 << 17, stdin ), p == q )
? EOF : *p++;
} inline int rint() {
int x = 0; char s = fgc();
for ( ; s < '0' || '9' < s; s = fgc() );
for ( ; '0' <= s && s <= '9'; s = fgc() ) x = x * 10 + ( s ^ '0' );
return x;
} template<typename Tp>
inline void wint( Tp x ) {
if ( x < 0 ) putchar( '-' ), x = -x;
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
} typedef long long LL; template<typename Tp>
inline void chkmin( Tp& a, const Tp b ) { b < a && ( a = b ); }
template<typename Tp>
inline void chkmax( Tp& a, const Tp b ) { a < b && ( a = b ); }
inline LL lmin( const LL a, const LL b ) { return a < b ? a : b; } const int MAXN = 3e5, MAXM = MAXN << 1, MAXLG = 20;
const LL LINF = 1ll << 60;
int n, m; template<const int NODE, const int EDGE>
struct Graph {
int ecnt, head[NODE], to[EDGE], nxt[EDGE];
LL len[EDGE];
Graph(): ecnt( 1 ) {} inline void operator () ( const int s, const int t, const LL w ) {
#ifdef RYBY
printf( "%d %d %lld\n", s, t, w );
#endif
to[++ecnt] = t, len[ecnt] = w, nxt[ecnt] = head[s], head[s] = ecnt;
}
};
#define adj( t, u, v ) \
for ( int e = t.head[u], v; v = t.to[e], e; e = t.nxt[e] ) Graph<MAXN + 5, MAXM * 2 + 5> src; int vnode, dfc, dfn[MAXN * 2 + 5], low[MAXN + 5];
LL pre[MAXN * 2 + 5];
Graph<MAXN * 2 + 5, MAXN * 2 + 5> cac; inline void buildCactus( const int u, const int f ) {
static int top = 0, stk[MAXN + 5];
dfn[u] = low[u] = ++dfc, stk[++top] = u;
adj( src, u, v ) if ( v != f ) {
if ( !dfn[v] ) {
buildCactus( v, u );
chkmin( low[u], low[v] ); if ( low[v] >= dfn[u] ) {
cac( u, ++vnode, 0 ), pre[vnode] = src.len[e];
int las = u, ttop = top, cnt = 0;
do {
int w = stk[top];
for ( int i = src.head[w]; i; i = src.nxt[i] ) {
if ( i ^ e ^ 1 && src.to[i] == las ) {
++cnt;
pre[w] = pre[las] + src.len[i];
pre[vnode] += src.len[i];
break;
}
}
las = w;
} while ( stk[top--] != v ); do {
int w = stk[ttop];
cac( vnode, w, cnt ?
lmin( pre[w], pre[vnode] - pre[w] ) : pre[vnode] );
} while ( stk[ttop--] != v );
}
} else chkmin( low[u], dfn[v] );
}
} // `dfc` and `dfn` was used by `buildCactus`, pay attention.
int dep[MAXN * 2 + 5], fa[MAXN * 2 + 5][MAXLG + 5];
LL dis[MAXN * 2 + 5]; inline void initCactus( const int u ) {
dfn[u] = ++dfc;
for ( int i = 1; fa[u][i - 1]; fa[u][i] = fa[fa[u][i - 1]][i - 1], ++i );
adj( cac, u, v ) {
dep[v] = dep[u] + 1, dis[v] = dis[u] + cac.len[e], fa[v][0] = u;
initCactus( v );
}
} inline int lca( int u, int v ) {
if ( dep[u] < dep[v] ) u ^= v ^= u ^= v;
per ( i, MAXLG, 0 ) if ( dep[fa[u][i]] >= dep[v] ) u = fa[u][i];
if ( u == v ) return u;
per ( i, MAXLG, 0 ) if ( fa[u][i] != fa[v][i] ) u = fa[u][i], v = fa[v][i];
return fa[u][0];
} inline int climb( int u, const int par ) {
per ( i, MAXLG, 0 ) if ( dep[fa[u][i]] > dep[par] ) u = fa[u][i];
return u;
} Graph<MAXN * 2 + 5, MAXN * 2 + 5> virc; inline void vlink( int s, int t ) {
// s is t's ancestor in cactus tree.
if ( s > n ) {
int is = climb( t, s );
virc( s, is, dis[is] - dis[s] ), s = is;
}
if ( t > n ) {
virc( fa[t][0], t, dis[t] - dis[fa[t][0]] ), t = fa[t][0];
}
if ( s != t ) virc( s, t, dis[t] - dis[s] );
} inline void buildVirCac( std::vector<int>& vec ) {
static int top, stk[MAXN * 2 + 5];
virc.ecnt = 0, stk[top = 1] = 1; std::sort( vec.begin(), vec.end(), []( const int a, const int b ) {
return dfn[a] < dfn[b];
} ); for ( int u: vec ) if ( u != 1 ) {
int anc = lca( stk[top], u );
while ( dep[stk[top]] > dep[anc] ) {
int a = stk[top--], b = dep[stk[top]] < dep[anc] ? anc : stk[top];
vlink( b, a );
}
if ( stk[top] != anc ) stk[++top] = anc;
stk[++top] = u;
} while ( top > 1 ) {
int a = stk[top--], b = stk[top];
vlink( b, a );
}
} LL ans, f[MAXN * 2 + 5];
bool book[MAXN + 5]; inline void contri( const int u, const std::vector<int>& cir ) {
static int que[MAXN + 5], hd, tl;
int sz = int( cir.size() ); LL half = pre[u] >> 1; #define val( i ) ( pre[cir[i]] + ( i >= sz >> 1 ? pre[u] : 0 ) ) que[hd = tl = 1] = 0;
rep ( i, 1, sz - 1 ) {
while ( hd <= tl && val( i ) - val( que[hd] ) > half ) ++hd; if ( hd <= tl ) {
chkmax( ans, f[cir[que[hd]]] - val( que[hd] )
+ f[cir[i]] + val( i ) );
} while ( hd <= tl && f[cir[que[tl]]] - val( que[tl] )
<= f[cir[i]] - val( i ) ) --tl;
que[++tl] = i;
} #undef val
} inline void solve( const int u, const int par ) {
f[u] = -LINF;
adj( virc, u, v ) solve( v, u );
if ( u <= n ) {
LL mx = book[u] ? 0 : -LINF, sx = -LINF;
adj( virc, u, v ) {
if ( LL d = f[v] + virc.len[e]; d > mx ) sx = mx, mx = d;
else if ( d > sx ) sx = d;
}
chkmax( ans, mx + sx ), f[u] = mx;
} else {
static std::vector<int> cir; cir.clear(); LL tmpp = pre[par]; pre[par] = 0;
cir.push_back( par );
adj( virc, u, v ) cir.push_back( v );
int sz = int( cir.size() );
cir.resize( sz << 1 );
rep ( i, 0, sz - 1 ) cir[sz + i] = cir[i]; contri( u, cir );
pre[par] = tmpp; adj( virc, u, v ) chkmax( f[u], f[v] + virc.len[e] );
}
virc.head[u] = 0;
} int main() {
n = rint(), m = rint();
rep ( i, 1, m ) {
int u = rint(), v = rint(), w = rint();
src( u, v, w ), src( v, u, w );
} #ifdef RYBY
puts( "+++ +++ +++" );
#endif vnode = n, buildCactus( 1, 0 );
dfc = 0, dep[1] = 1, initCactus( 1 ); #ifdef RYBY
puts( "--- --- ---" );
#endif std::vector<int> vec;
for ( int q = rint(), k; q--; vec.clear() ) {
k = rint(), vec.resize( k );
rep ( i, 0, k - 1 ) book[vec[i] = rint()] = true;
buildVirCac( vec ); ans = 0, solve( 1, 0 );
wint( ans ), putchar( '\n' ); for ( int u: vec ) book[u] = false;
} return 0;
}

Solution -「UOJ #87」mx 的仙人掌的更多相关文章

  1. Solution -「UOJ #46」玄学

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\) 和 \(q\) 次操作,操作内容如下: 给出 \(l,r,k,b\),声明一个修改方案,表示 ...

  2. Solution -「UOJ #450」复读机

    \(\mathcal{Description}\)   Link.   求从 \(m\) 种颜色,每种颜色无限多的小球里选 \(n\) 个构成排列,使得每种颜色出现次数为 \(d\) 的倍数的排列方案 ...

  3. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  4. Solution -「UNR #5」「UOJ #671」诡异操作

    \(\mathcal{Desciprtion}\)   Link.   给定序列 \(\{a_n\}\),支持 \(q\) 次操作: 给定 \(l,r,v\),\(\forall i\in[l,r], ...

  5. Solution -「JOISC 2020」「UOJ #509」迷路的猫

    \(\mathcal{Decription}\)   Link.   这是一道通信题.   给定一个 \(n\) 个点 \(m\) 条边的连通无向图与两个限制 \(A,B\).   程序 Anthon ...

  6. Solution -「UR #21」「UOJ #632」挑战最大团

    \(\mathcal{Description}\)   Link.   对于简单无向图 \(G=(V,E)\),定义它是"优美"的,当且仅当 \[\forall\{a,b,c,d\ ...

  7. Solution -「UR #2」「UOJ #32」跳蚤公路

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的带权有向图,每条边还有属性 \(s\in\{-1,0,1\}\).对于每个 \(u ...

  8. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  9. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

随机推荐

  1. antd中的form表单 initialValue导致数据不更新问题

    初步理解 : initialValue就是所谓的defaultValue,只会在第一次赋值的时候改变,却又有一些不同,因为 initialValue又会因其他改动而改变. 然而当获取的数据重新上来要渲 ...

  2. Echart可视化学习(二)

    文档的源代码地址,需要的下载就可以了(访问密码:7567) https://url56.ctfile.com/f/34653256-527823386-04154f 正文: 页面主体部分 设置测试样式 ...

  3. Layui table 学习笔记

    templet:'<div>{{createrFormat(d.accounts.name)}}</div>' function createrFormat(o){ retur ...

  4. vue-json-editor可视化编辑器的介绍与应用

    vue-json-editor可视化编辑器 最近项目中有用到json编辑器,我选用了这款vue的编辑器,看起来也是比较简洁,接下来就具体介绍一下它,以及内部属性. 一.vue-json-editor的 ...

  5. Kubernetes 中的 Pod 安全策略

    来源:伪架构师作者:崔秀龙很多人分不清 SecurityContext 和 PodSecurityPolicy 这两个关键字的差别,其实很简单:•SecurityContext 是 Pod 中的一个字 ...

  6. MASA Framework - 整体设计思路

    源起 年初我们在找一款框架,希望它有如下几个特点: 学习成本低 只需要学.Net每年主推的技术栈和业务特性必须支持的中间件,给开发同学减负,只需要专注业务就好 个人见解:一款好用的框架应该是补充,而不 ...

  7. 使用Redis分布式锁控制请求串行处理

    1.需求背景 在一些写接口的场景下,由于一些网络因素导致用户的表单重复提交,就会在相邻很短的时间内,发出多个数据一样的请求.后台接口的幂等性保证一般都是先检查数据的状态,然后决定是否进行执行写入操作, ...

  8. [开发笔记usbTOcan]用树莓派搭建私有Git服务器

    0 | 思路 在开始编程前,先创建一个版本管理库,以前一直用SVN,但目前用Git的还是比较,正好利用这个机会学习GIt. 想过使用Github提供的免费服务器,但项目目前还没有做开源的准备,于是就有 ...

  9. 【刷题-LeetCode】213. House Robber II

    House Robber II You are a professional robber planning to rob houses along a street. Each house has ...

  10. [Anti-AV] 从攻防对抗辩证性分析jsp免杀(一)

    从攻防对抗辩证性分析jsp免杀 从最早的最朴素木马 <%@ page import="java.io.InputStream" %> <%@ page impor ...