在以往消息队列的使用中,我们通常使用集成消息中间件开源包来实现对应功能,而消息中间件的实现又有多种,比如目前比较主流的ActiveMQ、RocketMQ、RabbitMQ、Kafka,Stream等,这些消息中间件的实现都各有优劣。

  在进行框架设计的时候,我们考虑是否能够和之前实现的短信发送、分布式存储等功能一样,抽象统一消息接口,屏蔽底层实现,在用到消息队列时,使用统一的接口代码,然后在根据自己业务需要选择不同消息中间件时,只需要通过配置就可以实现灵活切换使用哪种消息中间件。Spring Cloud Stream已经实现了这样的功能,下面我们在框架中集成并测试消息中间件的功能。

目前spring-cloud-stream官网显示已支持以下消息中间件,我们使用RabbitMQ和Apache Kafka来集成测试:

一、集成RabbitMQ并测试消息收发

  RabbitMQ是使用Erlang语言实现的,这里安装需要安装Erlang的依赖等,这里为了快速安装测试,所以使用Docker安装单机版RabbitMQ。

1、拉取RabbitMQ的Docker镜像,后缀带management的是带web管理界面的镜像

docker pull rabbitmq:3.9.13-management

2、创建和启动RabbitMQ容器

docker run -d\
-e RABBITMQ_DEFAULT_USER=admin\
-e RABBITMQ_DEFAULT_PASS=123456\
--name rabbitmq\
-p 15672:15672\
-p 5672:5672\
-v `pwd`/bigdata:/var/lib/rabbitmq\
rabbitmq:3.9.13-management

3、查看RabbitMQ是否启动

[root@localhost ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
ff1922cc6b73 rabbitmq:3.9.13-management "docker-entrypoint.s…" About a minute ago Up About a minute 4369/tcp, 5671/tcp, 0.0.0.0:5672->5672/tcp, :::5672->5672/tcp, 15671/tcp, 15691-15692/tcp, 25672/tcp, 0.0.0.0:15672->15672/tcp, :::15672->15672/tcp rabbitmq

4、访问管理控制台http://172.16.20.225:15672 ,输入设置的用户名密码 admin/123456登录。如果管理台不能访问,可以尝试使用一下命令启动:

docker exec -it rabbitmq rabbitmq-plugins enable rabbitmq_management



5、Nacos添加配置,我们以操作日志和API日志为示例,说明自定义输入和输出通道进行消息收发,operation-log为操作日志,api-log为API日志。注意,官网有文档说明:使用multiple RabbitMQ binders 时需要排除RabbitAutoConfiguration,实际应用过程中,如果不排除,也不直接配置RabbitMQ的连接,那么RabbitMQ健康检查会默认去连接127.0.0.1:5672,导致后台一直报错。

spring:
autoconfigure:
# 使用multiple RabbitMQ binders 时需要排除RabbitAutoConfiguration
exclude:
- org.springframework.boot.autoconfigure.amqp.RabbitAutoConfiguration
cloud:
stream:
binders:
defaultRabbit:
type: rabbit
environment: #配置rabbimq连接环境
spring:
rabbitmq:
host: 172.16.20.225
username: admin
password: 123456
virtual-host: /
bindings:
output_operation_log:
destination: operation-log #exchange名称,交换模式默认是topic
content-type: application/json
binder: defaultRabbit
output_api_log:
destination: api-log #exchange名称,交换模式默认是topic
content-type: application/json
binder: defaultRabbit
input_operation_log:
destination: operation-log
content-type: application/json
binder: defaultRabbit
group: ${spring.application.name}
consumer:
concurrency: 2 # 初始/最少/空闲时 消费者数量,默认1
input_api_log:
destination: api-log
content-type: application/json
binder: defaultRabbit
group: ${spring.application.name}
consumer:
concurrency: 2 # 初始/最少/空闲时 消费者数量,默认1

6、在gitegg-service-bigdata中添加spring-cloud-starter-stream-rabbit依赖,这里注意,只需要在具体使用消息中间件的微服务上引入,不需要统一引入,并不是每个微服务都会用到消息中间件,况且可能不同的微服务使用不同的消息中间件。

        <dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

7、自定义日志输出通道LogSink.java

/**
* @author GitEgg
*/
public interface LogSink { String INPUT_OPERATION_LOG = "output_operation_log"; String INPUT_API_LOG = "output_api_log"; /**
* 操作日志自定义输入通道
* @return
*/
@Input(INPUT_OPERATION_LOG)
SubscribableChannel inputOperationLog(); /**
* API日志自定义输入通道
* @return
*/
@Input(INPUT_API_LOG)
SubscribableChannel inputApiLog();
}

8、自定义日志输入通道LogSource.java

/**
* 自定义Stream输出通道
* @author GitEgg
*/
public interface LogSource { String OUTPUT_OPERATION_LOG = "input_operation_log"; String OUTPUT_API_LOG = "input_api_log"; /**
* 操作日志自定义输出通道
* @return
*/
@Output(OUTPUT_OPERATION_LOG)
MessageChannel outputOperationLog(); /**
* API日志自定义输出通道
* @return
*/
@Output(OUTPUT_API_LOG)
MessageChannel outputApiLog(); }

9、实现日志推送接口的调用, @Scheduled(fixedRate = 3000)是为了测试推送消息,每隔3秒执行一次定时任务,注意:要使定时任务执行,还需要在Application启动类添加@EnableScheduling注解。

ILogSendService.java

/**
* @author GitEgg
*/
public interface ILogSendService { /**
* 发送操作日志消息
* @return
*/
void sendOperationLog(); /**
* 发送api日志消息
* @return
*/
void sendApiLog();
}

LogSendImpl.java

/**
* @author GitEgg
*/
@EnableBinding(value = { LogSource.class })
@Slf4j
@Component
@RequiredArgsConstructor(onConstructor_ = @Autowired)
public class LogSendImpl implements ILogSendService { private final LogSource logSource; @Scheduled(fixedRate = 3000)
@Override
public void sendOperationLog() {
log.info("推送操作日志-------开始------");
logSource.outputOperationLog()
.send(MessageBuilder.withPayload(UUID.randomUUID().toString()).build());
log.info("推送操作日志-------结束------");
} @Scheduled(fixedRate = 3000)
@Override
public void sendApiLog() {
log.info("推送API日志-------开始------");
logSource.outputApiLog()
.send(MessageBuilder.withPayload(UUID.randomUUID().toString()).build());
log.info("推送API日志-------结束------");
}
}

10、实现日志消息接收接口

ILogReceiveService.java

/**
* @author GitEgg
*/
public interface ILogReceiveService { /**
* 接收到操作日志消息
* @param msg
*/
<T> void receiveOperationLog(GenericMessage<T> msg); /**
* 接收到API日志消息
* @param msg
*/
<T> void receiveApiLog(GenericMessage<T> msg);
}

LogReceiveImpl.java

/**
* @author GitEgg
*/
@Slf4j
@Component
@EnableBinding(value = { LogSink.class })
public class LogReceiveImpl implements ILogReceiveService { @StreamListener(LogSink.INPUT_OPERATION_LOG)
@Override
public synchronized <T> void receiveOperationLog(GenericMessage<T> msg) {
log.info("接收到操作日志: " + msg.getPayload());
} @StreamListener(LogSink.INPUT_API_LOG)
@Override
public synchronized <T> void receiveApiLog(GenericMessage<T> msg) {
log.info("接收到API日志: " + msg.getPayload());
}
}

10、启动微服务,可以看到日志打印推送和接收消息已经执行的情况

二、集成Kafka测试消息收发并测试消息中间件切换

  使用Spring Cloud Stream的其中一项优势就是方便切换消息中间件又不需要改动代码,那么下面我们测试在Nacos的Spring Cloud Stream配置中同时添加Kafka配置,并且API日志继续使用RabbitMQ,操作日志使用Kafka,查看是否能够同时运行。这里先将配置测试放在前面方便对比,Kafka集群搭建放在后面说明。

1、Nacos添加Kafka配置,并且将operation_log的binder改为Kafka

spring:
autoconfigure:
# 使用multiple RabbitMQ binders 时需要排除RabbitAutoConfiguration
exclude:
- org.springframework.boot.autoconfigure.amqp.RabbitAutoConfiguration
cloud:
stream:
binders:
defaultRabbit:
type: rabbit
environment: #配置rabbimq连接环境
spring:
rabbitmq:
host: 172.16.20.225
username: admin
password: 123456
virtual-host: /
kafka:
type: kafka
environment:
spring:
cloud:
stream:
kafka:
binder:
brokers: 172.16.20.220:9092,172.16.20.221:9092,172.16.20.222:9092
zkNodes: 172.16.20.220:2181,172.16.20.221:2181,172.16.20.222:2181
# 自动创建Topic
auto-create-topics: true
bindings:
output_operation_log:
destination: operation-log #exchange名称,交换模式默认是topic
content-type: application/json
binder: kafka
output_api_log:
destination: api-log #exchange名称,交换模式默认是topic
content-type: application/json
binder: defaultRabbit
input_operation_log:
destination: operation-log
content-type: application/json
binder: kafka
group: ${spring.application.name}
consumer:
concurrency: 2 # 初始/最少/空闲时 消费者数量,默认1
input_api_log:
destination: api-log
content-type: application/json
binder: defaultRabbit
group: ${spring.application.name}
consumer:
concurrency: 2 # 初始/最少/空闲时 消费者数量,默认1

2、登录Kafka服务器,切换到Kafka的bin目录下启动一个消费operation-log主题的消费者

./kafka-console-consumer.sh --bootstrap-server 172.16.20.221:9092 --topic operation-log

3、启动微服务,查看RabbitMQ和Kafka的日志推送和接收是否能够正常运行

  • 微服务后台日志显示能够正常推送和接收消息:

  • Kafka服务器显示收到了操作日志消息

三、Kafka集群搭建

1、环境准备:

  首先准备好三台CentOS系统的主机,设置ip为:172.16.20.220、172.16.20.221、172.16.20.222。

  Kafka会使用大量文件和网络socket,Linux默认配置的File descriptors(文件描述符)不能够满足Kafka高吞吐量的要求,所以这里需要调整(更多性能优化,请查看Kafka官方文档):

vi /etc/security/limits.conf
# 在最后加入,修改完成后,重启系统生效。
* soft nofile 131072
* hard nofile 131072

  新建kafka的日志目录和zookeeper数据目录,因为这两项默认放在tmp目录,而tmp目录中内容会随重启而丢失,所以我们自定义以下目录:

 mkdir /data/zookeeper
mkdir /data/zookeeper/data
mkdir /data/zookeeper/logs mkdir /data/kafka
mkdir /data/kafka/data
mkdir /data/kafka/logs

2、zookeeper.properties配置

vi /usr/local/kafka/config/zookeeper.properties

修改如下:

# 修改为自定义的zookeeper数据目录
dataDir=/data/zookeeper/data # 修改为自定义的zookeeper日志目录
dataLogDir=/data/zookeeper/logs # 端口
clientPort=2181 # 注释掉
#maxClientCnxns=0 # 设置连接参数,添加如下配置
# 为zk的基本时间单元,毫秒
tickTime=2000
# Leader-Follower初始通信时限 tickTime*10
initLimit=10
# Leader-Follower同步通信时限 tickTime*5
syncLimit=5 # 设置broker Id的服务地址,本机ip一定要用0.0.0.0代替
server.1=0.0.0.0:2888:3888
server.2=172.16.20.221:2888:3888
server.3=172.16.20.222:2888:3888

3、在各台服务器的zookeeper数据目录/data/zookeeper/data添加myid文件,写入服务broker.id属性值

在data文件夹中新建myid文件,myid文件的内容为1(一句话创建:echo 1 > myid)

cd /data/zookeeper/data

vi myid

#添加内容:1 其他两台主机分别配置 2和3
1

4、kafka配置,进入config目录下,修改server.properties文件

vi /usr/local/kafka/config/server.properties
# 每台服务器的broker.id都不能相同
broker.id=1
# 是否可以删除topic
delete.topic.enable=true
# topic 在当前broker上的分片个数,与broker保持一致
num.partitions=3
# 每个主机地址不一样:
listeners=PLAINTEXT://172.16.20.220:9092
advertised.listeners=PLAINTEXT://172.16.20.220:9092
# 具体一些参数
log.dirs=/data/kafka/kafka-logs
# 设置zookeeper集群地址与端口如下:
zookeeper.connect=172.16.20.220:2181,172.16.20.221:2181,172.16.20.222:2181

5、Kafka启动

kafka启动时先启动zookeeper,再启动kafka;关闭时相反,先关闭kafka,再关闭zookeeper。

  • zookeeper启动命令
./zookeeper-server-start.sh ../config/zookeeper.properties &

后台运行启动命令:

nohup ./zookeeper-server-start.sh ../config/zookeeper.properties >/data/zookeeper/logs/zookeeper.log 2>1 &

或者

./zookeeper-server-start.sh -daemon ../config/zookeeper.properties &

查看集群状态:

./zookeeper-server-start.sh status ../config/zookeeper.properties
  • kafka启动命令
./kafka-server-start.sh ../config/server.properties &

后台运行启动命令:

nohup bin/kafka-server-start.sh ../config/server.properties >/data/kafka/logs/kafka.log 2>1 &

或者

 ./kafka-server-start.sh -daemon ../config/server.properties &
  • 创建topic,最新版本已经不需要使用zookeeper参数创建。
./kafka-topics.sh --create --replication-factor 2 --partitions 1 --topic test --bootstrap-server 172.16.20.220:9092

参数解释:

复制两份

  --replication-factor 2

创建1个分区

  --partitions 1

topic 名称

  --topic test

  • 查看已经存在的topic(三台设备都执行时可以看到)
./kafka-topics.sh --list --bootstrap-server 172.16.20.220:9092
  • 启动生产者:
./kafka-console-producer.sh --broker-list 172.16.20.220:9092 --topic test
  • 启动消费者:
./kafka-console-consumer.sh --bootstrap-server 172.16.20.221:9092 --topic test
./kafka-console-consumer.sh --bootstrap-server 172.16.20.222:9092 --topic test

添加参数 --from-beginning 从开始位置消费,不是从最新消息

./kafka-console-consumer.sh --bootstrap-server 172.16.20.221 --topic test --from-beginning
  • 测试:在生产者输入test,可以在消费者的两台服务器上看到同样的字符test,说明Kafka服务器集群已搭建成功。
四、完整的Nacos配置
spring:
jackson:
time-zone: Asia/Shanghai
date-format: yyyy-MM-dd HH:mm:ss
servlet:
multipart:
max-file-size: 2048MB
max-request-size: 2048MB
security:
oauth2:
resourceserver:
jwt:
jwk-set-uri: 'http://127.0.0.1/gitegg-oauth/oauth/public_key'
autoconfigure:
# 动态数据源排除默认配置
exclude:
- com.alibaba.druid.spring.boot.autoconfigure.DruidDataSourceAutoConfigure
- org.springframework.boot.autoconfigure.amqp.RabbitAutoConfiguration
datasource:
druid:
stat-view-servlet:
enabled: true
loginUsername: admin
loginPassword: 123456
dynamic:
# 设置默认的数据源或者数据源组,默认值即为master
primary: master
# 设置严格模式,默认false不启动. 启动后在未匹配到指定数据源时候会抛出异常,不启动则使用默认数据源.
strict: false
# 开启seata代理,开启后默认每个数据源都代理,如果某个不需要代理可单独关闭
seata: false
#支持XA及AT模式,默认AT
seata-mode: AT
druid:
initialSize: 1
minIdle: 3
maxActive: 20
# 配置获取连接等待超时的时间
maxWait: 60000
# 配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒
timeBetweenEvictionRunsMillis: 60000
# 配置一个连接在池中最小生存的时间,单位是毫秒
minEvictableIdleTimeMillis: 30000
validationQuery: select 'x'
testWhileIdle: true
testOnBorrow: false
testOnReturn: false
# 打开PSCache,并且指定每个连接上PSCache的大小
poolPreparedStatements: true
maxPoolPreparedStatementPerConnectionSize: 20
# 配置监控统计拦截的filters,去掉后监控界面sql无法统计,'wall'用于防火墙
filters: config,stat,slf4j
# 通过connectProperties属性来打开mergeSql功能;慢SQL记录
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000;
# 合并多个DruidDataSource的监控数据
useGlobalDataSourceStat: true
datasource:
master:
url: jdbc:mysql://127.0.0.188/gitegg_cloud?zeroDateTimeBehavior=convertToNull&useUnicode=true&characterEncoding=utf8&allowMultiQueries=true&serverTimezone=Asia/Shanghai
username: root
password: root
cloud:
sentinel:
filter:
enabled: true
transport:
port: 8719
dashboard: 127.0.0.188:8086
eager: true
datasource:
ds2:
nacos:
data-type: json
server-addr: 127.0.0.188:8848
dataId: ${spring.application.name}-sentinel
groupId: DEFAULT_GROUP
rule-type: flow
gateway:
discovery:
locator:
enabled: true
routes:
- id: gitegg-oauth
uri: lb://gitegg-oauth
predicates:
- Path=/gitegg-oauth/**
filters:
- StripPrefix=1
- id: gitegg-service-system
uri: lb://gitegg-service-system
predicates:
- Path=/gitegg-service-system/**
filters:
- StripPrefix=1
- id: gitegg-service-extension
uri: lb://gitegg-service-extension
predicates:
- Path=/gitegg-service-extension/**
filters:
- StripPrefix=1
- id: gitegg-service-base
uri: lb://gitegg-service-base
predicates:
- Path=/gitegg-service-base/**
filters:
- StripPrefix=1
- id: gitegg-code-generator
uri: lb://gitegg-code-generator
predicates:
- Path=/gitegg-code-generator/**
filters:
- StripPrefix=1
plugin:
config:
# 是否开启Gateway日志插件
enable: true
# requestLog==true && responseLog==false时,只记录请求参数日志;responseLog==true时,记录请求参数和返回参数。
# 记录入参 requestLog==false时,不记录日志
requestLog: true
# 生产环境,尽量只记录入参,因为返回参数数据太大,且大多数情况是无意义的
# 记录出参
responseLog: true
# all: 所有日志 configure:serviceId和pathList交集 serviceId: 只记录serviceId配置列表 pathList:只记录pathList配置列表
logType: all
serviceIdList:
- "gitegg-oauth"
- "gitegg-service-system"
pathList:
- "/gitegg-oauth/oauth/token"
- "/gitegg-oauth/oauth/user/info"
stream:
binders:
defaultRabbit:
type: rabbit
environment: #配置rabbimq连接环境
spring:
rabbitmq:
host: 127.0.0.225
username: admin
password: 123456
virtual-host: /
kafka:
type: kafka
environment:
spring:
cloud:
stream:
kafka:
binder:
brokers: 127.0.0.220:9092,127.0.0.221:9092,127.0.0.222:9092
zkNodes: 127.0.0.220:2181,127.0.0.221:2181,127.0.0.222:2181
# 自动创建Topic
auto-create-topics: true
bindings:
output_operation_log:
destination: operation-log #exchange名称,交换模式默认是topic
content-type: application/json
binder: kafka
output_api_log:
destination: api-log #exchange名称,交换模式默认是topic
content-type: application/json
binder: defaultRabbit
input_operation_log:
destination: operation-log
content-type: application/json
binder: kafka
group: ${spring.application.name}
consumer:
concurrency: 2 # 初始/最少/空闲时 消费者数量,默认1
input_api_log:
destination: api-log
content-type: application/json
binder: defaultRabbit
group: ${spring.application.name}
consumer:
concurrency: 2 # 初始/最少/空闲时 消费者数量,默认1
redis:
database: 1
host: 127.0.0.188
port: 6312
password: 123456
ssl: false
timeout: 2000
redisson:
config: |
singleServerConfig:
idleConnectionTimeout: 10000
connectTimeout: 10000
timeout: 3000
retryAttempts: 3
retryInterval: 1500
password: 123456
subscriptionsPerConnection: 5
clientName: null
address: "redis://127.0.0.188:6312"
subscriptionConnectionMinimumIdleSize: 1
subscriptionConnectionPoolSize: 50
connectionMinimumIdleSize: 32
connectionPoolSize: 64
database: 0
dnsMonitoringInterval: 5000
threads: 0
nettyThreads: 0
codec: !<org.redisson.codec.JsonJacksonCodec> {}
"transportMode":"NIO"
#业务系统相关初始化参数
system:
#登录密码默认最大尝试次数
maxTryTimes: 5
#不需要验证码登录的最大次数
maxNonCaptchaTimes: 2
#注册用户默认密码
defaultPwd: 12345678
#注册用户默认角色ID
defaultRoleId: 4
#注册用户默认组织机构ID
defaultOrgId: 79
#不需要数据权限过滤的角色key
noDataFilterRole: DATA_NO_FILTER
#AccessToken过期时间(秒)默认为2小时
accessTokenExpiration: 60
#RefreshToken过期时间(秒)默认为24小时
refreshTokenExpiration: 300
logging:
config: http://${spring.cloud.nacos.discovery.server-addr}/nacos/v1/cs/configs?dataId=log4j2.xml&group=${spring.nacos.config.group}
file:
# 配置日志的路径,包含 spring.application.name Linux: /var/log/${spring.application.name}
path: D:\\log4j2_nacos\\${spring.application.name}
feign:
hystrix:
enabled: false
compression:
# 配置响应 GZIP 压缩
response:
enabled: true
# 配置请求 GZIP 压缩
request:
enabled: true
# 支持压缩的mime types
mime-types: text/xml,application/xml,application/json
# 配置压缩数据大小的最小阀值,默认 2048
min-request-size: 2048
client:
config:
default:
connectTimeout: 8000
readTimeout: 8000
loggerLevel: FULL
#Ribbon配置
ribbon:
#请求连接的超时时间
ConnectTimeout: 50000
#请求处理/响应的超时时间
ReadTimeout: 50000
#对所有操作请求都进行重试,如果没有实现幂等的情况下是很危险的,所以这里设置为false
OkToRetryOnAllOperations: false
#切换实例的重试次数
MaxAutoRetriesNextServer: 5
#当前实例的重试次数
MaxAutoRetries: 5
#负载均衡策略
NFLoadBalancerRuleClassName: com.alibaba.cloud.nacos.ribbon.NacosRule
#Sentinel端点配置
management:
endpoints:
web:
exposure:
include: '*'
mybatis-plus:
mapper-locations: classpath*:/com/gitegg/*/*/mapper/*Mapper.xml
typeAliasesPackage: com.gitegg.*.*.entity
global-config:
#主键类型 0:"数据库ID自增", 1:"用户输入ID",2:"全局唯一ID (数字类型唯一ID)", 3:"全局唯一ID UUID";
id-type: 2
#字段策略 0:"忽略判断",1:"非 NULL 判断"),2:"非空判断"
field-strategy: 2
#驼峰下划线转换
db-column-underline: true
#刷新mapper 调试神器
refresh-mapper: true
#数据库大写下划线转换
#capital-mode: true
#逻辑删除配置
logic-delete-value: 1
logic-not-delete-value: 0
configuration:
map-underscore-to-camel-case: true
cache-enabled: false
log-impl: org.apache.ibatis.logging.stdout.StdOutImpl
# 多租户配置
tenant:
# 是否开启租户模式
enable: true
# 需要排除的多租户的表
exclusionTable:
- "t_sys_district"
- "t_sys_tenant"
- "t_sys_role"
- "t_sys_resource"
- "t_sys_role_resource"
- "oauth_client_details"
# 租户字段名称
column: tenant_id
# 数据权限
data-permission:
# 注解方式默认关闭,否则影响性能
annotation-enable: true
seata:
enabled: false
application-id: ${spring.application.name}
tx-service-group: gitegg_seata_tx_group
# 一定要是false
enable-auto-data-source-proxy: false
service:
vgroup-mapping:
#key与上面的gitegg_seata_tx_group的值对应
gitegg_seata_tx_group: default
config:
type: nacos
nacos:
namespace:
serverAddr: 127.0.0.188:8848
group: SEATA_GROUP
userName: "nacos"
password: "nacos"
registry:
type: nacos
nacos:
#seata服务端(TC)在nacos中的应用名称
application: seata-server
server-addr: 127.0.0.188:8848
namespace:
userName: "nacos"
password: "nacos"
#验证码配置
captcha:
#验证码的类型 sliding: 滑动验证码 image: 图片验证码
type: sliding
aj:
captcha:
#缓存local/redis...
cache-type: redis
#local缓存的阈值,达到这个值,清除缓存
#cache-number=1000
#local定时清除过期缓存(单位秒),设置为0代表不执行
#timing-clear=180
#验证码类型default两种都实例化。
type: default
#汉字统一使用Unicode,保证程序通过@value读取到是中文,在线转换 https://tool.chinaz.com/tools/unicode.aspx 中文转Unicode
#右下角水印文字(我的水印)
water-mark: GitEgg
#右下角水印字体(宋体)
water-font: 宋体
#点选文字验证码的文字字体(宋体)
font-type: 宋体
#校验滑动拼图允许误差偏移量(默认5像素)
slip-offset: 5
#aes加密坐标开启或者禁用(true|false)
aes-status: true
#滑动干扰项(0/1/2) 1.2.2版本新增
interference-options: 2
# 接口请求次数一分钟限制是否开启 true|false
req-frequency-limit-enable: true
# 验证失败5次,get接口锁定
req-get-lock-limit: 5
# 验证失败后,锁定时间间隔,s
req-get-lock-seconds: 360
# get接口一分钟内请求数限制
req-get-minute-limit: 30
# check接口一分钟内请求数限制
req-check-minute-limit: 60
# verify接口一分钟内请求数限制
req-verify-minute-limit: 60
#SMS短信通用配置
sms:
#手机号码正则表达式,为空则不做验证
reg:
#负载均衡类型 可选值: Random、RoundRobin、WeightRandom、WeightRoundRobin
load-balancer-type: Random
web:
#启用web端点
enable: true
#访问路径前缀
base-path: /commons/sms
verification-code:
#验证码长度
code-length: 6
#为true则验证失败后删除验证码
delete-by-verify-fail: false
#为true则验证成功后删除验证码
delete-by-verify-succeed: true
#重试间隔时间,单位秒
retry-interval-time: 60
#验证码有效期,单位秒
expiration-time: 180
#识别码长度
identification-code-length: 3
#是否启用识别码
use-identification-code: false
redis:
#验证码业务在保存到redis时的key的前缀
key-prefix: VerificationCode
# 网关放行设置 1、whiteUrls不需要鉴权的公共url,白名单,配置白名单路径 2、authUrls需要鉴权的公共url
oauth-list:
staticFiles:
- "/doc.html"
- "/webjars/**"
- "/favicon.ico"
- "/swagger-resources/**"
whiteUrls:
- "/*/v2/api-docs"
- "/gitegg-oauth/login/phone"
- "/gitegg-oauth/login/qr"
- "/gitegg-oauth/oauth/token"
- "/gitegg-oauth/oauth/public_key"
- "/gitegg-oauth/oauth/captcha/type"
- "/gitegg-oauth/oauth/captcha"
- "/gitegg-oauth/oauth/captcha/check"
- "/gitegg-oauth/oauth/captcha/image"
- "/gitegg-oauth/oauth/sms/captcha/send"
- "/gitegg-service-base/dict/list/{dictCode}"
authUrls:
- "/gitegg-oauth/oauth/logout"
- "/gitegg-oauth/oauth/user/info"
- "/gitegg-service-extension/extension/upload/file"
- "/gitegg-service-extension/extension/dfs/query/default"
源码地址:

Gitee: https://gitee.com/wmz1930/GitEgg

GitHub: https://github.com/wmz1930/GitEgg

SpringCloud微服务实战——搭建企业级开发框架(三十六):使用Spring Cloud Stream实现可灵活配置消息中间件的功能的更多相关文章

  1. SpringCloud微服务实战——搭建企业级开发框架(十六):集成Sentinel高可用流量管理框架【自定义返回消息】

    Sentinel限流之后,默认的响应消息为Blocked by Sentinel (flow limiting),对于系统整体功能提示来说并不统一,参考我们前面设置的统一响应及异常处理方式,返回相同的 ...

  2. SpringCloud微服务实战——搭建企业级开发框架(十二):OpenFeign+Ribbon实现负载均衡

      Ribbon是Netflix下的负载均衡项目,它主要实现中间层应用程序的负载均衡.为Ribbon配置服务提供者地址列表后,Ribbon就会基于某种负载均衡算法,自动帮助服务调用者去请求.Ribbo ...

  3. SpringCloud微服务实战——搭建企业级开发框架(十五):集成Sentinel高可用流量管理框架【熔断降级】

      Sentinel除了流量控制以外,对调用链路中不稳定的资源进行熔断降级也是保障高可用的重要措施之一.由于调用关系的复杂性,如果调用链路中的某个资源不稳定,最终会导致请求发生堆积.Sentinel ...

  4. SpringCloud微服务实战——搭建企业级开发框架(十):使用Nacos分布式配置中心

    随着业务的发展.微服务架构的升级,服务的数量.程序的配置日益增多(各种微服务.各种服务器地址.各种参数),传统的配置文件方式和数据库的方式已无法满足开发人员对配置管理的要求: 安全性:配置跟随源代码保 ...

  5. SpringCloud微服务实战——搭建企业级开发框架(十四):集成Sentinel高可用流量管理框架【限流】

      Sentinel 是面向分布式服务架构的高可用流量防护组件,主要以流量为切入点,从限流.流量整形.熔断降级.系统负载保护.热点防护等多个维度来帮助开发者保障微服务的稳定性. Sentinel 具有 ...

  6. SpringCloud微服务实战——搭建企业级开发框架(十九):Gateway使用knife4j聚合微服务文档

      本章介绍Spring Cloud Gateway网关如何集成knife4j,通过网关聚合所有的Swagger微服务文档 1.gitegg-gateway中引入knife4j依赖,如果没有后端代码编 ...

  7. SpringCloud微服务实战——搭建企业级开发框架(三十七):微服务日志系统设计与实现

      针对业务开发人员通常面对的业务需求,我们将日志分为操作(请求)日志和系统运行日志,操作(请求)日志可以让管理员或者运营人员方便简单的在系统界面中查询追踪用户具体做了哪些操作,便于分析统计用户行为: ...

  8. SpringCloud微服务实战——搭建企业级开发框架(三十五):SpringCloud + Docker + k8s实现微服务集群打包部署-集群环境部署

    一.集群环境规划配置 生产环境不要使用一主多从,要使用多主多从.这里使用三台主机进行测试一台Master(172.16.20.111),两台Node(172.16.20.112和172.16.20.1 ...

  9. SpringCloud微服务实战——搭建企业级开发框架(三十八):搭建ELK日志采集与分析系统

      一套好的日志分析系统可以详细记录系统的运行情况,方便我们定位分析系统性能瓶颈.查找定位系统问题.上一篇说明了日志的多种业务场景以及日志记录的实现方式,那么日志记录下来,相关人员就需要对日志数据进行 ...

随机推荐

  1. JMeter_性能压测报错address already in use:connect

    报错截图如下: 原因分析: 这个问题的原因是windows端口被耗尽了(默认1024-5000),而且操作系统要 2~4分钟才会重新释放这些端口,所以可以增加windows的可用端口来解决.windo ...

  2. vert.x框架-简单路由使用

    package xue.myVertX; import io.vertx.core.AbstractVerticle; import io.vertx.core.Vertx; import io.ve ...

  3. 如何提高docker容器的安全性

    一. 概述 Docker 容器一直是开发人员工具箱的重要组成部分,使开发人员能够以标准化的方式构建.分发和部署他们的应用程序.毫无疑问,这种吸引力的增加伴随着容器化技术的相关安全问题.他们可以很容易地 ...

  4. 使用nexus搭建一个maven私有仓库

    使用nexus搭建一个maven私有仓库 大家好,我是程序员田同学.今天带大家搭建一个maven私有仓库. 很多公司都是搭建自己的Maven私有仓库,今天就带大家使用nexus搭建一个自己的私有仓库, ...

  5. Linux环境下的Docker的安装和部署、学习二

    DockerFile体系结构(保留字指令) FROM:基础镜像,当前新镜像是基于哪个镜像的 MAINTAINER:镜像维护者的姓名和邮箱地址 RUN:容器构建时需要运行的命令 EXPOSE:当前容器对 ...

  6. jmeter和JDK安装教程(Windows)

    1.JDK的安装及环境变量配置 1.JDK的下载安装 JDK官网下载地址:https://www.oracle.com/java/technologies/downloads 然后注册账号,开始下载, ...

  7. java-异常-异常注意事项

    1 package p1.exception; 2 3 /* 4 * 异常的注意事项: 5 * 6 * 1,子类在覆盖父类方法时,父类的方法如果抛出了异常, 7 * 那么子类的方法只能抛出父类的异常或 ...

  8. Clang-Format 个人常用配置

    Clang-Format 个人常用配置 本文记录 Clang-Format 个人常用配置. 欲了解更多配置选项,可查阅 官方文档. BasedOnStyle: Google AccessModifie ...

  9. Java多线程专题1: 并发与并行的基础概念

    合集目录 Java多线程专题1: 并发与并行的基础概念 什么是多线程并发和并行? 并发: Concurrency 特指单核可以处理多任务, 这种机制主要实现于操作系统层面, 用于充分利用单CPU的性能 ...

  10. 解决mybatis拦截器无法注入spring bean的问题

    公司要整合rabbitmq与mybatis拦截器做一个数据同步功能. 整合过程中大部分环节都没什么问题,就是遇到了mybatis拦截器 @Intercepts(@Signature(type = Ex ...