​作者:腾讯云流计算 Oceanus 团队

流计算 Oceanus 简介

流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。本文将为您详细介绍如何使用 MySQL 接入数据,经过流计算 Oceanus 对数据进行处理分析(示例中采用小写转换函数对name字段进行了小写转换),最终将处理好的数据存入 Elasticsearch 中 。

操作视频

前置准备

1.  MySQL 集群准备

1.1 新建 MySQL 集群进入 MySQL 控制台[1],点击左上方【新建】创建集群。具体可参考官方文档 创建 mysql 实例[2]。在【数据库管理】> 【参数设置】中设置参数 binlog_row_image=FULL,便于使用 CDC(Capture Data Change)特性,实现数据的变更实时捕获。

1.2 准备数据

首先创建 testdb 库,并在 testdb 库中创建用户 user 表,并插入数据。user 表结构:

字段名 类型 含义
user_id int 用户ID
user_name varchar(50) 用户名
create_time timestamp 创建时间

在表中插入2条数据。

INSERT INTO `user` (`user_id`, `user_name`, `create_time`) VALUES (1001, '小明', '2021-10-01 00:00:00');
INSERT INTO `user` (`user_id`, `user_name`, `create_time`) VALUES (1002, 'TONY', '2021-10-02 00:00:00');

  

1.3 设置参数

点击实例 ID,在实例详情页面点击【数据库管理】进入【参数设置】面板,设置binlog_row_image=FULL来开启数据库变化的同步。

通过 MySQL 集成数据到流计算 Oceanus (Flink) 集群,可以使用 flink-connector-jdbc 或者 flink-connector-mysq-cdc。使用 MySQL-cdc 特性时,flink-connector-mysq-cdc 连接器需要设置 MySQL 数据库的参数 binlog_row_image=FULL。

2. 创建流计算 Oceanus 集群

进入流计算 Oceanus 控制台[3],点击左侧【集群管理】,点击左上方【创建集群】,具体可参考流计算 Oceanus 官方文档创建独享集群[4]。

创建流计算 Oceanus 集群和 MySQL 集群时所选 VPC 必须是同一 VPC。

3. 创建 Elasticsearch 集群

进入 Elasticsearch 控制台[5],点击左上方【新建】,创建 Elasticsearch 实例,具体操作请访问创建 Elasticsearch 集群[6]。

创建 ES 集群和流计算 Oceanus 集群时所选私有网络 VPC 必须是同一 VPC。

流计算 Oceanus 作业

1. 创建 Source

CREATE TABLE `user_source` (
`user_id` int,
`user_name` varchar(50),
PRIMARY KEY (`user_id`) NOT ENFORCED -- 如果要同步的数据库表定义了主键, 则这里也需要定义
) WITH (
'connector' = 'mysql-cdc', -- 必须为 'mysql-cdc'
'hostname' = '10.0.0.158', -- 数据库的 IP
'port' = '3306', -- 数据库的访问端口
'username' = 'root', -- 数据库访问的用户名(需要提供 SHOW DATABASES, REPLICATION SLAVE, REPLICATION CLIENT, SELECT, RELOAD 权限)
'password' = 'yourpassword', -- 数据库访问的密码
'database-name' = 'testdb', -- 需要同步的数据库
'table-name' = 'user' -- 需要同步的数据表名
);

  

2. 创建 Sink

-- Elasticsearch 只能作为数据目的表(Sink)写入
-- 参见 https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/connect.html#elasticsearch-connector CREATE TABLE es_sink (
`user_id` INT,
`user_name` VARCHAR
) WITH (
'connector.type' = 'elasticsearch', -- 输出到 Elasticsearch
'connector.version' = '6', -- 指定 Elasticsearch 的版本, 例如 '6', '7'.
'connector.hosts' = 'http://10.0.0.175:9200',
'connector.index' = 'User',
'connector.document-type' = 'user',
'connector.username' = 'elastic',
'connector.password' = 'yourpassword', 'update-mode' = 'upsert', -- 捕捉数据库变化时,需使用 'upsert' 模式
'connector.key-delimiter' = '$', -- 可选参数, 复合主键的连接字符 (默认是 _ 符号)
'connector.key-null-literal' = 'n/a', -- 主键为 null 时的替代字符串,默认是 'null'
'connector.connection-max-retry-timeout' = '300', -- 每次请求的最大超时时间 (ms)
'format.type' = 'json' -- 输出数据格式, 目前只支持 'json'
);

  

3. 编写业务 SQL

insert into es_sink
(
select user_id,
LOWER(user_name) -- LOWER()函数会将用户名转换为小写
from user_source
);

  

4. 选择 Connector

点击【保存】>【发布草稿】运行作业。

请根据实际购买的 Elasticsearch 版本选择对应的 Connector ,1.13 版本之后无需选择可自动匹配 Connector。

5. 数据查询

进入 Elasticsearch 控制台[5],点击之前购买的 Elasticsearch 实例,点击右上角【Kibana】,进入 Kibana 查询数据。具体查询方法请参考通过 Kibana 访问集群[7]。

总结

本示例用 MySQL 连接器持续集成数据库数据变化记录,经过流计算 Oceanus 实现最基础的数据转换功能,最后 Sink 到Elasticsearch 中,用户无需提前在 Elasticsearch 中创建索引。另外,ES 作为Source/Sink , 使用时间戳 timestamp 类型字段时长度需指定,如:timestamp(3)

参考阅读

[1]: MySQL 控制台:https://console.cloud.tencent.com/cdb

[2]: 创建 mysql 实例:https://cloud.tencent.com/document/product/236/46433

[3]: 流计算 Oceanus 控制台:https://console.cloud.tencent.com/oceanus/overview

[4]: 创建 Oceanus 独享集群:https://cloud.tencent.com/document/product/849/48298

[5]: Elasticsearch 控制台:https://console.cloud.tencent.com/es

[6]: 创建 Elasticsearch 集群:https://cloud.tencent.com/document/product/845/19536

[7]: 通过 Kibana 访问集群:https://cloud.tencent.com/document/product/845/19541

关注“腾讯云大数据”公众号,技术交流、最新活动、服务专享一站 Get~

流计算 Oceanus 限量秒杀专享活动火爆进行中↓↓

Flink 实践教程 - 入门(4):读取 MySQL 数据写入到 ES的更多相关文章

  1. Flink 实践教程-入门(8): 简单 ETL 作业

    作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发.无缝连接.亚 ...

  2. Flink RichSourceFunction应用,读关系型数据(mysql)数据写入关系型数据库(mysql)

    1. 写在前面 Flink被誉为第四代大数据计算引擎组件,即可以用作基于离线分布式计算,也可以应用于实时计算.Flink的核心是转化为流进行计算.Flink三个核心:Source,Transforma ...

  3. Spark使用Java读取mysql数据和保存数据到mysql

    原文引自:http://blog.csdn.net/fengzhimohan/article/details/78471952 项目应用需要利用Spark读取mysql数据进行数据分析,然后将分析结果 ...

  4. 使用logstash拉取MySQL数据存储到es中的再次操作

    使用情况说明: 已经使用logstash拉取MySQL数据存储到es中,es中也创建了相应的索引,也存储了数据.假若把这个索引给删除了,再次进行同步操作的话要咋做,从最开始的数据进行同步,而不是新增的 ...

  5. Elasticsearch准实时索引实现(数据写入到es分片并存储到文件中的过程)

    溢写到文件系统缓存 当数据写入到ES分片时,会首先写入到内存中,然后通过内存的buffer生成一个segment,并刷到文件系统缓存中,数据可以被检索(注意不是直接刷到磁盘) ES中默认1秒,refr ...

  6. 关于C#读取MySql数据时,返回DataTable中某字段数据是System.Array[]形式

    我在使用C#(VS2008)读取MySql数据库(5.1版本)时,返回的DataTable数据中arrivalDate字段数据显示为System.Array[]形式(程序中没有对返回的数据进行任何加工 ...

  7. Spark:读取mysql数据作为DataFrame

    在日常工作中,有时候需要读取mysql的数据作为DataFrame数据源进行后期的Spark处理,Spark自带了一些方法供我们使用,读取mysql我们可以直接使用表的结构信息,而不需要自己再去定义每 ...

  8. Django读取Mysql数据并显示在前端

    一.首先按添加网页的步骤添加网页,我的网页名为table.html, app名为web table.html放到相应目录下, froms文件提前写好 修改views.py ? 1 2 3 4 5 6 ...

  9. Openxml入门---Openxm读取Excel数据

    Openxml读取Excel数据: 有些问题,如果当Cell 里面是 日期和浮点型的话,对应的Cell.DataType==Null,对应的时间会转换为一个浮点型,对于这块可以通过DateTime.F ...

随机推荐

  1. sonar扫面代码总体流程

  2. javascript 定时器 timer setTimeout setInterval (js for循环如何等待几秒再循环)

    实现一个打点计时器,要求1.从 start 到 end(包含 start 和 end),每隔 100 毫秒 console.log 一个数字,每次数字增幅为 12.返回的对象中需要包含一个 cance ...

  3. 推荐一个pycharm验证xpath表达式的插件XPathView +​ XSLT

    使用Appium进行自动化测试,使用xpath元素定位,想验证xpath定位是否正确,可以使用在线的xpath验证网站,也可以使用这次推荐的插件XPathView +​ XSLT.

  4. 51nod1355-斐波那契的最小公倍数【min-max容斥】

    正题 题目链接:http://www.51nod.com/Challenge/Problem.html#problemId=1355 题目大意 定义\(f_i\)表示斐波那契的第\(i\)项,给出一个 ...

  5. Serverless 是一种思想状态

    来源 | Serverless 公众号:作者 | Ben Kehoe:译者 | donghui 函数不是重点 如果你因为喜欢 Lambda 而选择 Serverless,你这样做的原因是错误的.如果你 ...

  6. 开发函数计算的正确姿势——OCR 服务

    作者 | 杜万(倚贤) 阿里云技术专家 简介 首先介绍下在本文出现的几个比较重要的概念: OCR(光学字符识别):光学字符识别(Optical Character Recognition, OCR)是 ...

  7. 你了解一条sql的执行顺序吗

    sql是后端开发人员经常碰到的问题,我们经常会写这样的sql:select name,id from student where id=12 order by id desc,把这条sql放到数据库中 ...

  8. CentOS 7安装docker环境

    一.环境准备 Docker支持以下的CentOS版本: 1.Docker运行在CentOS 7(64-bit)上要求系统为64位,系统内核版本为3.10以上 2.Docker运行在Centos 6.5 ...

  9. 一个小众搞笑的xss漏洞练习平台

    XSS是当今网络安全事件中数量最多的攻击方式,虽然其危害性不高,但主要和其他攻击手段相结合,以实现一个复杂的攻击场景.那么,XSS是什么? XSS全称跨站脚本(Cross Site Scripting ...

  10. 7-Zip

    7-Zip https://www.7-zip.org/