HDU 4289 Control (网络流,最大流)

Description

You, the head of Department of Security, recently received a top-secret information that a group of terrorists is planning to transport some WMD(Weapon of Mass Destruction)from one city (the source) to another one (the destination). You know their date, source and destination, and they are using the highway network.

The highway network consists of bidirectional highways, connecting two distinct city. A vehicle can only enter/exit the highway network at cities only.

You may locate some SA (special agents) in some selected cities, so that when the terrorists enter a city under observation (that is, SA is in this city), they would be caught immediately.

It is possible to locate SA in all cities, but since controlling a city with SA may cost your department a certain amount of money, which might vary from city to city, and your budget might not be able to bear the full cost of controlling all cities, you must identify a set of cities, that:

all traffic of the terrorists must pass at least one city of the set.

sum of cost of controlling all cities in the set is minimal.

You may assume that it is always possible to get from source of the terrorists to their destination.

Input

There are several test cases.

The first line of a single test case contains two integer N and M ( 2 <= N <= 200; 1 <= M <= 20000), the number of cities and the number of highways. Cities are numbered from 1 to N.

The second line contains two integer S,D ( 1 <= S,D <= N), the number of the source and the number of the destination.

The following N lines contains costs. Of these lines the ith one contains exactly one integer, the cost of locating SA in the ith city to put it under observation. You may assume that the cost is positive and not exceeding 10 7.

The followingM lines tells you about highway network. Each of these lines contains two integers A and B, indicating a bidirectional highway between A and B.

Please process until EOF (End Of File).

Output

For each test case you should output exactly one line, containing one integer, the sum of cost of your selected set.

See samples for detailed information.

Sample Input

5 6

5 3

5

2

3

4

12

1 5

5 4

2 3

2 4

4 3

2 1

Sample Output

3

Http

HDU:https://vjudge.net/problem/HDU-4289

Source

网络流,最大流,最小割

题目大意

在一个无向图中,每一个点都有一个点权。现在给定起点S和终点T,求割去若干个点后S与T不连通的最小割去点权和。

解决思路

根据最大流最小割定理,求解出最大流即为最小割(理性理解一下,确实如此)

因为本题的权在点上,所以把点i拆成两个,i和i+n,这两个点之间边的容量就是点权。而其他的边的容量都置为无穷大。然后我们以S为源点,T+n为汇点,求解出最大流就是最小割。

这里使用Dinic实现最大流,可以参考这篇文章

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; const int maxN=600;
const int maxM=20001*20;
const int inf=2147483647; class Edge
{
public:
int u,v,flow;
}; int n,m;
int S,T;
int cnt=-1;
int Head[maxN];
int Next[maxM];
Edge E[maxM];
int depth[maxN];
int Q[maxM];
int cur[maxN]; void Add_Edge(int u,int v,int flow);
bool bfs();
int dfs(int u,int flow); int main()
{
while (cin>>n>>m)
{
cnt=-1;
memset(Head,-1,sizeof(Head));
scanf("%d%d",&S,&T);//源点和汇点
T=T+n;//这里要把T变成拆点后的后一个点
for (int i=1;i<=n;i++)
{
int cost;
scanf("%d",&cost);
Add_Edge(i,i+n,cost);//读入点权,并拆点连边
}
for (int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);//读入边,连边,注意是无向的
Add_Edge(u+n,v,inf);
Add_Edge(v+n,u,inf);
}
int Ans=0;//求解最大流,最大流就是最小割
while (bfs())
{
for (int i=1;i<=2*n;i++)
cur[i]=Head[i];
while (int di=dfs(S,inf))
Ans+=di;
}
printf("%d\n",Ans);
}
return 0;
} void Add_Edge(int u,int v,int flow)
{
cnt++;
Next[cnt]=Head[u];
Head[u]=cnt;
E[cnt].u=u;
E[cnt].v=v;
E[cnt].flow=flow; cnt++;
Next[cnt]=Head[v];
Head[v]=cnt;
E[cnt].u=v;
E[cnt].v=u;
E[cnt].flow=0;
return;
} bool bfs()
{
memset(depth,-1,sizeof(depth));
int h=1,t=0;
Q[1]=S;
depth[S]=1;
do
{
t++;
int u=Q[t];
for (int i=Head[u];i!=-1;i=Next[i])
{
int v=E[i].v;
if ((depth[v]==-1)&&(E[i].flow>0))
{
depth[v]=depth[u]+1;
h++;
Q[h]=v;
}
}
}
while (t!=h);
if (depth[T]==-1)
return 0;
return 1;
} int dfs(int u,int flow)
{
if (u==T)
return flow;
for (int &i=cur[u];i!=-1;i=Next[i])
{
int v=E[i].v;
if ((depth[v]==depth[u]+1)&&(E[i].flow>0))
{
int di=dfs(v,min(flow,E[i].flow));
if (di>0)
{
E[i].flow-=di;
E[i^1].flow+=di;
return di;
}
}
}
return 0;
}

HDU 4289 Control (网络流,最大流)的更多相关文章

  1. hdu 4289 Control 网络流

    题目链接 给出一些点, 每个点有一个权值, 给出一些边, 起点以及终点, 去掉一些点使得起点和终点不连通, 求最小的val. 拆点, 把一个点s拆成s和s', 之间建一条边, 权值为点权. 对于一条边 ...

  2. hdu 4289 Control(最小割 + 拆点)

    http://acm.hdu.edu.cn/showproblem.php?pid=4289 Control Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  3. HDU 4289 Control(最大流+拆点,最小割点)

    题意: 有一群恐怖分子要从起点st到en城市集合,你要在路程中的城市阻止他们,使得他们全部都被抓到(当然st城市,en城市也可以抓捕).在每一个城市抓捕都有一个花费,你要找到花费最少是多少. 题解: ...

  4. HDU 4289 Control (最小割 拆点)

    Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  5. HDU 4289 Control 最小割

    Control 题意:有一个犯罪集团要贩卖大规模杀伤武器,从s城运输到t城,现在你是一个特殊部门的长官,可以在城市中布置眼线,但是布施眼线需要花钱,现在问至少要花费多少能使得你及时阻止他们的运输. 题 ...

  6. Leapin' Lizards [HDU - 2732]【网络流最大流】

    题目链接 网络流直接最大流就是了,只是要拆点小心一个点的流超出了原本的正常范围才是. #include <iostream> #include <cstdio> #includ ...

  7. HDU 4289 Control

    最小割 一个点拆成两个 AddEdge(i,i+N,x); 原图中的每条边这样连 AddEdge(u+N,v,INF); AddEdge(v+N,u,INF); S是源点,t+N是汇点.最大流就是答案 ...

  8. HDU - 4289 Control (Dinic)

    You, the head of Department of Security, recently received a top-secret information that a group of ...

  9. hdu 4289 最大流拆点

    大致题意:     给出一个又n个点,m条边组成的无向图.给出两个点s,t.对于图中的每个点,去掉这个点都需要一定的花费.求至少多少花费才能使得s和t之间不连通. 大致思路:     最基础的拆点最大 ...

随机推荐

  1. Jenkins日常运维笔记-重启数据覆盖问题、迁移、基于java代码发版(maven构建)

    之前在公司机房部署了一套jenkins环境,现需要迁移至IDC机房服务器上,迁移过程中记录了一些细节:1)jenkins默认的主目录放在当前用户家目录路径下的.jenkins目录中.如jenkins使 ...

  2. linux-RPM安装

    vh可写可不写

  3. 12.13 Daily Scrum

    现在已经可以实现在应用中直接通过WebView浏览餐厅的网页,而不用再调用手机的浏览器. 收藏夹的功能也基本实现,接下来的目标时将收藏夹与每一个用户关联.   Today's Task Tomorro ...

  4. 软件工程附加篇章:进阶四则运算和Core对接

    0x01 :计算模块(Core)和前端对接 首先特别结对编程刘乾组(SivilTaram)提供的计算模块(Core),http://www.cnblogs.com/SivilTaram/p/48599 ...

  5. Linux内核分析作业 NO.8 完结撒花~~~

    进程的切换和系统的一般执行过程 于佳心  原创作品转载请注明出处  <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-10000 ...

  6. VIM编辑器常用命令(转)

    转自:https://www.cnblogs.com/Nice-Boy/p/6124177.html

  7. checkbox未选中不提交数据

    如果checkbox为选中的话提交的数据为NULL function checkForm() { alert(($("#checkbox").get(0).checked)); i ...

  8. <<浪潮之巅>>阅读笔记三

    纵看世界,横看国内.我们国内也有很多很优秀的企业正在走向或者已经处于浪潮之巅.阿里巴巴.腾讯和百度这三巨头应该是我们计算机行业的龙头.但是 不得不说,在创新方面我们做的并不多,这是值得每一个从事计算机 ...

  9. 小学四则运算APP 第二次冲刺-第二天

    团队成员:陈淑筠.杨家安.陈曦 团队选题:小学四则运算APP 第二次冲刺阶段时间:11.29~12.09 本次发布的判断题功能界面的设置: activity_panduan_set.xml: < ...

  10. react 动态获取数据

    如果reander()里面的dom元素是动态获取的,就要将函数放到setSTATE()里面执行