HDU 4289 Control (网络流,最大流)

Description

You, the head of Department of Security, recently received a top-secret information that a group of terrorists is planning to transport some WMD(Weapon of Mass Destruction)from one city (the source) to another one (the destination). You know their date, source and destination, and they are using the highway network.

The highway network consists of bidirectional highways, connecting two distinct city. A vehicle can only enter/exit the highway network at cities only.

You may locate some SA (special agents) in some selected cities, so that when the terrorists enter a city under observation (that is, SA is in this city), they would be caught immediately.

It is possible to locate SA in all cities, but since controlling a city with SA may cost your department a certain amount of money, which might vary from city to city, and your budget might not be able to bear the full cost of controlling all cities, you must identify a set of cities, that:

all traffic of the terrorists must pass at least one city of the set.

sum of cost of controlling all cities in the set is minimal.

You may assume that it is always possible to get from source of the terrorists to their destination.

Input

There are several test cases.

The first line of a single test case contains two integer N and M ( 2 <= N <= 200; 1 <= M <= 20000), the number of cities and the number of highways. Cities are numbered from 1 to N.

The second line contains two integer S,D ( 1 <= S,D <= N), the number of the source and the number of the destination.

The following N lines contains costs. Of these lines the ith one contains exactly one integer, the cost of locating SA in the ith city to put it under observation. You may assume that the cost is positive and not exceeding 10 7.

The followingM lines tells you about highway network. Each of these lines contains two integers A and B, indicating a bidirectional highway between A and B.

Please process until EOF (End Of File).

Output

For each test case you should output exactly one line, containing one integer, the sum of cost of your selected set.

See samples for detailed information.

Sample Input

5 6

5 3

5

2

3

4

12

1 5

5 4

2 3

2 4

4 3

2 1

Sample Output

3

Http

HDU:https://vjudge.net/problem/HDU-4289

Source

网络流,最大流,最小割

题目大意

在一个无向图中,每一个点都有一个点权。现在给定起点S和终点T,求割去若干个点后S与T不连通的最小割去点权和。

解决思路

根据最大流最小割定理,求解出最大流即为最小割(理性理解一下,确实如此)

因为本题的权在点上,所以把点i拆成两个,i和i+n,这两个点之间边的容量就是点权。而其他的边的容量都置为无穷大。然后我们以S为源点,T+n为汇点,求解出最大流就是最小割。

这里使用Dinic实现最大流,可以参考这篇文章

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; const int maxN=600;
const int maxM=20001*20;
const int inf=2147483647; class Edge
{
public:
int u,v,flow;
}; int n,m;
int S,T;
int cnt=-1;
int Head[maxN];
int Next[maxM];
Edge E[maxM];
int depth[maxN];
int Q[maxM];
int cur[maxN]; void Add_Edge(int u,int v,int flow);
bool bfs();
int dfs(int u,int flow); int main()
{
while (cin>>n>>m)
{
cnt=-1;
memset(Head,-1,sizeof(Head));
scanf("%d%d",&S,&T);//源点和汇点
T=T+n;//这里要把T变成拆点后的后一个点
for (int i=1;i<=n;i++)
{
int cost;
scanf("%d",&cost);
Add_Edge(i,i+n,cost);//读入点权,并拆点连边
}
for (int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);//读入边,连边,注意是无向的
Add_Edge(u+n,v,inf);
Add_Edge(v+n,u,inf);
}
int Ans=0;//求解最大流,最大流就是最小割
while (bfs())
{
for (int i=1;i<=2*n;i++)
cur[i]=Head[i];
while (int di=dfs(S,inf))
Ans+=di;
}
printf("%d\n",Ans);
}
return 0;
} void Add_Edge(int u,int v,int flow)
{
cnt++;
Next[cnt]=Head[u];
Head[u]=cnt;
E[cnt].u=u;
E[cnt].v=v;
E[cnt].flow=flow; cnt++;
Next[cnt]=Head[v];
Head[v]=cnt;
E[cnt].u=v;
E[cnt].v=u;
E[cnt].flow=0;
return;
} bool bfs()
{
memset(depth,-1,sizeof(depth));
int h=1,t=0;
Q[1]=S;
depth[S]=1;
do
{
t++;
int u=Q[t];
for (int i=Head[u];i!=-1;i=Next[i])
{
int v=E[i].v;
if ((depth[v]==-1)&&(E[i].flow>0))
{
depth[v]=depth[u]+1;
h++;
Q[h]=v;
}
}
}
while (t!=h);
if (depth[T]==-1)
return 0;
return 1;
} int dfs(int u,int flow)
{
if (u==T)
return flow;
for (int &i=cur[u];i!=-1;i=Next[i])
{
int v=E[i].v;
if ((depth[v]==depth[u]+1)&&(E[i].flow>0))
{
int di=dfs(v,min(flow,E[i].flow));
if (di>0)
{
E[i].flow-=di;
E[i^1].flow+=di;
return di;
}
}
}
return 0;
}

HDU 4289 Control (网络流,最大流)的更多相关文章

  1. hdu 4289 Control 网络流

    题目链接 给出一些点, 每个点有一个权值, 给出一些边, 起点以及终点, 去掉一些点使得起点和终点不连通, 求最小的val. 拆点, 把一个点s拆成s和s', 之间建一条边, 权值为点权. 对于一条边 ...

  2. hdu 4289 Control(最小割 + 拆点)

    http://acm.hdu.edu.cn/showproblem.php?pid=4289 Control Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  3. HDU 4289 Control(最大流+拆点,最小割点)

    题意: 有一群恐怖分子要从起点st到en城市集合,你要在路程中的城市阻止他们,使得他们全部都被抓到(当然st城市,en城市也可以抓捕).在每一个城市抓捕都有一个花费,你要找到花费最少是多少. 题解: ...

  4. HDU 4289 Control (最小割 拆点)

    Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  5. HDU 4289 Control 最小割

    Control 题意:有一个犯罪集团要贩卖大规模杀伤武器,从s城运输到t城,现在你是一个特殊部门的长官,可以在城市中布置眼线,但是布施眼线需要花钱,现在问至少要花费多少能使得你及时阻止他们的运输. 题 ...

  6. Leapin' Lizards [HDU - 2732]【网络流最大流】

    题目链接 网络流直接最大流就是了,只是要拆点小心一个点的流超出了原本的正常范围才是. #include <iostream> #include <cstdio> #includ ...

  7. HDU 4289 Control

    最小割 一个点拆成两个 AddEdge(i,i+N,x); 原图中的每条边这样连 AddEdge(u+N,v,INF); AddEdge(v+N,u,INF); S是源点,t+N是汇点.最大流就是答案 ...

  8. HDU - 4289 Control (Dinic)

    You, the head of Department of Security, recently received a top-secret information that a group of ...

  9. hdu 4289 最大流拆点

    大致题意:     给出一个又n个点,m条边组成的无向图.给出两个点s,t.对于图中的每个点,去掉这个点都需要一定的花费.求至少多少花费才能使得s和t之间不连通. 大致思路:     最基础的拆点最大 ...

随机推荐

  1. BodeAbp服务端介绍

    BodeAbp服务端只提供api,绝大部分api通过abp的动态WebApi机制提供,原理可以参考这篇文章:http://www.cnblogs.com/1zhk/p/5418694.html 与业务 ...

  2. ansible环境部署及常用模块总结 - 运维笔记

    一.  Ansible 介绍Ansible是一个配置管理系统configuration management system, python 语言是运维人员必须会的语言, ansible 是一个基于py ...

  3. jsonrpc环境搭建和简单实例

    一.环境准备 下载需要的jar包和js文件,下载地址:https://yunpan.cn/cxvbm9DhK9tDq  访问密码 6a50 二.新建一个web工程,jsonrpc-1.0.jar复制到 ...

  4. Centos6.5网络配置

    由于项目部署的需要,不得不继续研究Linux,前期看过一些Linux方面的资料,也动手配置过Linux网络配置,但是由于开发项目一般在windows下进行的,用Linux比较少,所以基本上也就忘记以前 ...

  5. Week 1 工程表格

    PSP2.1 Personal Software Process Stages Time Planning 计划 · Estimate · 估计这个任务需要多少时间 6h30min Developme ...

  6. 20135337——Linux实践三:程序破解

    程序破解 查看 运行 反汇编,查看汇编码 对反汇编代码进行分析: 在main函数的汇编代码中可以看出程序在调用"scanf"函数请求输入之后,对 [esp+0x1c] 和 [esp ...

  7. a simple example for spring AOP

    /** * Created by Administrator on 2015/11/25. * a interface */public interface ArithmeticCalculator{ ...

  8. MySQLi面向对象实践--multi_query

    使用multi_query可以实现执行多条SQL语句,每一条SQL语句通过分号分隔. 需要注意的是: 多条用分号分隔的SQL语句中,只要有一条SQL语句执行失败,那么这一条SQL语句以及之后的SQL语 ...

  9. Golang 数组、切片、映射

    定义数组 var arr1 [5]int //整型类型 fmt.Println(arr1) //[0 0 0 0 0] //赋值 arr1 = [5]int{1, 2, 3, 4, 5} fmt.Pr ...

  10. ejabberd在windows10下的配置文件ejabberd.yml存放路径

    cd %USERPROFILE%\AppData\Roaming\ejabberd\conf C:\Users\Administrator\AppData\Roaming\ejabberd\conf