Description

题库链接

给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去。

有 \(Q\) 次询问,每次询问给定一个集合 \(S\) ,求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步。

特别地,点 \(x\)(即起点)视为一开始就被经过了一次。

答案对 \(998244353\) 取模。

Solution

不妨设 \(f_{i,S}\) 表示在点 \(i\) 时,要遍历集合 \(S\) 的期望步数。那么对于一个询问 \(S\) ,答案就是 \(f_{x,S}\) 。

从两个方面来考虑如何求 \(f\) :

  1. 如果 \(u\not\in S\) ,由套路,显然满足 \[f_{u,S}=\frac{\sum_{\text{v is the neighbor of u}}f_{v,S}}{degree_u}+1\]
  2. 如果 \(u\in S\)
    1. 若 \(\{u\}=S\) ,显然 \(f_{u,S}=0\) ;
    2. 若 \(\{u\}\neq S\) ,容易得到 \(f_{u,S}=f_{u,S-\{u\}}\)

这样我们对于同一个状态 \(S\) 可以得到若干个方程,那么在这一个状态内高斯消元即可。

由于是树上消元,所以可以用[Codeforces 802L]Send the Fool Further! (hard)的方法化成 \(f_u=k_uf_{fa_u}+b_u\) 的形式 \(O(n)\) 求解。

总复杂度是 \(O(n\log(n)2^n+Q)\) ,其中 \(\log(n)\) 是求逆元的复杂度。

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 20, SIZE = (1<<18)+5, yzh = 998244353; int n, q, x, u, v, bin[N], dg[N], S;
struct tt {int to, next; }edge[N<<1];
int path[N], top, k[N], b[N], f[N][SIZE]; int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%yzh;
b >>= 1, a = 1ll*a*a%yzh;
}
return ans;
}
void dfs(int u, int fa) {
k[u] = b[u] = 0;
for (int i = path[u], v; i; i = edge[i].next)
if ((v = edge[i].to) != fa) dfs(v, u);
if (!(bin[u-1]&S)) {
if (dg[u] == 1 && x != u) k[u] = b[u] = 1;
else {
k[u] = dg[u], b[u] = dg[u];
for (int i = path[u], v; i; i = edge[i].next)
if ((v = edge[i].to) != fa) {
(k[u] -= k[v]) %= yzh; (b[u] += b[v]) %= yzh;
}
k[u] = quick_pow(k[u], yzh-2);
b[u] = 1ll*b[u]*k[u]%yzh;
}
}else {
if (S^bin[u-1]) {
k[u] = 0; b[u] = f[u][S^bin[u-1]];
}else k[u] = b[u] = 0;
}
}
void cal(int u, int fa) {
f[u][S] = (1ll*k[u]*f[fa][S]%yzh+b[u])%yzh;
for (int i = path[u], v; i; i = edge[i].next)
if ((v = edge[i].to) != fa) cal(v, u);
}
void add(int u, int v) {edge[++top] = (tt){v, path[u]}, path[u] = top; ++dg[v]; }
void work() {
scanf("%d%d%d", &n, &q, &x);
for (int i = 1; i < n; i++) {
scanf("%d%d", &u, &v);
add(u, v), add(v, u);
}
bin[0] = 1; for (int i = 1; i < N; i++) bin[i] = (bin[i-1]<<1);
for (int i = 1; i < bin[n]; i++) S = i, dfs(x, 0), cal(x, 0);
while (q--) {
S = 0; scanf("%d", &u);
for (int i = 1; i <= u; i++) scanf("%d", &v), S |= bin[v-1];
printf("%d\n", (f[x][S]+yzh)%yzh);
}
}
int main() {work(); return 0; }

[PKUWC 2018]随机游走的更多相关文章

  1. LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)

    写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...

  2. 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元

    题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...

  3. LOJ #2542「PKUWC2018」随机游走

    $ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...

  4. 「Luogu4321」随机游走

    「Luogu4321」随机游走 题目描述 有一张 \(n\) 个点 \(m\) 条边的无向图,\(Q\) 组询问,每次询问给出一个出发点和一个点集 \(S\) ,求从出发点出发随机游走走遍这个点集的期 ...

  5. 洛谷 P5643 - [PKUWC2018]随机游走(Min-Max 容斥+FWT+树上高斯消元,hot tea)

    题面传送门 一道挺综合的 hot tea,放到 PKUWC 的 D2T2 还挺喜闻乐见的( 首先我们考虑怎样对一个固定的集合 \(S\) 计算答案,注意到我们要求的是一个形如 \(E(\max(S)) ...

  6. 【Matlab】随机游走产生图像效果

    随机游走类似布朗运动,就是随机的向各个方向走吧.产生的图像实在漂亮,所以还是贴出分享. clear all; close all; clc; n=100000; x= 0; y= 0; pixel=z ...

  7. 介绍一个全局最优化的方法:随机游走算法(Random Walk)

    1. 关于全局最优化求解   全局最优化是一个非常复杂的问题,目前还没有一个通用的办法可以对任意复杂函数求解全局最优值.上一篇文章讲解了一个求解局部极小值的方法--梯度下降法.这种方法对于求解精度不高 ...

  8. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  9. [PKUWC2018] 随机游走

    Description 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 ...

随机推荐

  1. Maven依赖及范围

    一.依赖范围(scope): 共5种,compile (编译).test (测试).runtime (运行时).provided.system compile:编译依赖范围,在编译,测试,运行时都需要 ...

  2. 【repost】前端学习总结(二十三)——前端框架天下三分:Angular React 和 Vue的比较

    目录(?)[+]   前端这几年的技术发展很快,细分下来,主要可以分成四个方面: 1.开发语言技术,主要是ES6&7,coffeescript,typescript等: 2.开发框架,如Ang ...

  3. oracle utl_http 访问https类型

    https://oracle-base.com/articles/misc/utl_http-and-ssl http://blog.whitehorses.nl/2010/05/27/access- ...

  4. Linux-程序包管理

    Linux上的软件安装有2种形式:源码.二进制文件,源码需要在编译环境下编译安装,二进制可以直接安装. 1.程序包管理器 rpm 程序包管理器能够将目标二进制格式(也就是从源码编译好的二进制文件,包括 ...

  5. 利用蒙特卡洛(Monte Carlo)方法计算π值[ 转载]

    部分转载自:https://blog.csdn.net/daniel960601/article/details/79121055 圆周率π是一个无理数,没有任何一个精确公式能够计算π值,π的计算只能 ...

  6. Apache Drill - join HBase and RDBMs

    HBase作为Nosql的常用系统之一,在很多大数据应用/平台中广泛使用.例如通过Spark统计后将结果存放到HBase中.通常统计结果还需要进一步和元数据或者字典表关联从而得到最终结果显示,这意味着 ...

  7. [UWP]如何实现UWP平台最佳图片裁剪控件

    前几天我写了一个UWP图片裁剪控件ImageCropper(开源地址),自认为算是现阶段UWP社区里最好用的图片裁剪控件了,今天就来分享下我编码的过程. 为什么又要造轮子 因为开发需要,我们需要使用一 ...

  8. [.net core学习] .net core中的MD5CryptoServiceProvider取代方法

    使用:MD5 m5 = MD5.Create(); 参考:http://stackoverflow.com/questions/27216121/alternatives-of-md5cryptose ...

  9. Container Adaptors

    Notes from C++ Primer stack and queue: based on deque priority_queue:    based on vector Standard li ...

  10. 2019-4-26 css学习笔记

    CSS简介:Cascading Style Sheets(层叠样式表)的缩写,它是一种用来表现HTML或XML等文件样式的计算机语言. CSS的作用:是定义网页外观(例如,字体.背景.文本.位置.布局 ...