scipy.stats与统计学:4个概率分布:N,chi2,F,t

 

四个常用分布的概率密度函数、分布函数、期望、分位数、以及期望方差标准差中位数原点矩:

1,正态分布:

from scipy.stats import norm

(1)概率密度函数:

norm.pdf(x, mu, sigma)               # 返回N(mu,sigma^2)的概率密度函数在 x 处的值

(2)概率分布函数:

norm.cdf(x, mu, sigma)               # 返回N(mu,sigma^2)的概率密度函数在 负无穷 到 x 上的积分,也就是概率分布函数的值
norm.sf(x, mu, sigma)                # 返回 1 - norm.cdf(x, mu, sigma^2)

(3)数学期望:

norm.expect( func = f, loc = mu, scale = sigma )       # 返回f(x)的期望,注意这里的loc和scale

(4)分位数:

norm.isf(1-alpha, mu, sigma)         # 返回值s满足:norm.cdf(s, mu, sigma^2) = alpha,s就是alpha分位数
norm.ppf(alpha, mu, sigma)           # 返回值s满足:norm.cdf(s, mu, sigma^2) = alpha,s就是alpha分位数

(5)最大似然估计:

norm.fit(a)                                 # 假定数组a来自正态分布,返回mu和sigma的最大似然估计。感觉结果不咋地。。

(6)分布的数量关系:

norm.mean(mu,sigma)                         # N(mu,sigma^2) 的均值
norm.var(mu,sigma)                          # N(mu,sigma^2) 的方差
norm.std(mu,sigma)                          # N(mu,sigma^2) 的方差再开平方根
norm.median(mu,sigma)                       # N(mu,sigma^2) 的中位数
norm.moment(a,mu,sigma)                     # N(mu,sigma^2) 的 a 阶原点矩

(7)产生满足正态分布的随机数:

norm.rvs(loc = mu,scale = sigma, size = N)       # 产生N个服从N(mu,sigma^2)的随机数

2,卡方分布:chi2

from scipy.stats import chi2

(1)概率密度函数:

chi2.pdf(x, n)                       # 返回\chi^2(n)的概率密度函数在 x 处的值

(2)概率分布函数:

chi2.cdf(x, n)                       # 返回\chi^2(n)的概率密度函数在 0 到 x 上的积分,也就是概率分布函数的值
chi2.sf(x, n)                        # 返回 1 - chi2.cdf(x, n)

(3)数学期望:

chi2.expect( func = f , args=(n,) )  # 返回f(x)的期望

(4)分位数:

chi2.isf(1-alpha, n)                 # 返回值s满足:chi2.cdf(s, n) = alpha,  s就是alpha分位数
chi2.ppf(alpha, n)                   # 返回值s满足:chi2.cdf(s, n) = alpha,  s就是alpha分位数

(5)分布的数量关系:

chi2.mean(n)                         # \chi^2(n) 的均值
chi2.var(n)                          # \chi^2(n) 的方差
chi2.std(n)                          # \chi^2(n) 的方差再开平方根
chi2.median(n)                       # \chi^2(n) 的中位数
chi2.moment(a,n)                     # \chi^2(n) 的 a 阶原点矩

3,F分布:

from scipy.stats import f

(1)概率密度函数:

f.pdf(x, m, n)                       # 返回F(m,n)的概率密度函数在x处的值

(2)概率分布函数:

f.cdf(x, m, n)                       # 返回F(m,n)的概率密度函数在0到x上的积分,也就是概率分布函数的值
chi2.sf(x, n)                        # 返回 1 - f.cdf(x, m, n)

(3)数学期望:

f.expect( func = g , args=(m, n) )   # 返回g(x)的数学期望

(4)分位数:

f.isf(1-alpha, m, n)                 # 返回值s满足:chi2.cdf(s, n) = alpha,  s就是alpha分位数
f.ppf(alpha, m, n)                   # 返回值s满足:chi2.cdf(s, n) = alpha,  s就是alpha分位数

(5)分布的数量关系:

f.mean(m, n)                         # F(m,n) 的均值
f.var(m, n)                          # F(m,n) 的方差
f.std(m, n)                          # F(m,n) 的方差再开平方根
f.median(m, n)                       # F(m,n) 的中位数
f.moment(a, m, n)                    # F(m,n) 的 a 阶原点矩
 

4,t分布:

from scipy.stats import t

(1)概率密度函数:

t.pdf(x, n)                         # 返回t(n)的概率密度函数在x处的值

(2)概率分布函数:

t.cdf(x, n)                         # 返回t(n)的概率密度函数在负无穷到x上的积分,也就是概率分布函数的值
t.sf(x, n)                          # 返回 1 - t.cdf(x, n)

(3)数学期望:

t.expect( func = f , args=(n,) )    # 返回f(x)的期望

(4)分位数:

t.isf(1-alpha, n)                   # 返回值s满足:t.cdf(s, n) = alpha,  s就是alpha分位数
t.ppf(alpha, n)                     # 返回值s满足:t.cdf(s, n) = alpha,  s就是alpha分位数

(5)分布的数量关系:

t.mean(n)                           # t(n) 的均值
t.var(n)                            # t(n) 的方差
t.std(n)                            # t(n) 的方差再开平方根
t.median(n)                         # t(n) 的中位数
t.moment(a,n)                       # t(n) 的 a 阶原点矩
 


scipy.stats与统计学:4个概率分布:N,chi2,F,t的更多相关文章

  1. Scipy教程 - 统计函数库scipy.stats

    http://blog.csdn.net/pipisorry/article/details/49515215 统计函数Statistical functions(scipy.stats) Pytho ...

  2. scipy.stats

    scipy.stats Scipy的stats模块包含了多种概率分布的随机变量,随机变量分为连续的和离散的两种.所有的连续随机变量都是rv_continuous的派生类的对象,而所有的离散随机变量都是 ...

  3. 关于使用scipy.stats.lognorm来模拟对数正态分布的误区

    lognorm方法的参数容易把人搞蒙.例如lognorm.rvs(s, loc=0, scale=1, size=1)中的参数s,loc,scale, 要记住:loc和scale并不是我们通常理解的对 ...

  4. [原创博文] 用Python做统计分析 (Scipy.stats的文档)

    [转自] 用Python做统计分析 (Scipy.stats的文档) 对scipy.stats的详细介绍: 这个文档说了以下内容,对python如何做统计分析感兴趣的人可以看看,毕竟Python的库也 ...

  5. scipy.stats.multivariate_normal的使用

    参考:https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.multivariate_normal.html ...

  6. 标准正态分布表(scipy.stats)

    0. 标准正态分布表与常用值 Z-score 是非标准正态分布标准化后的 x即 z=x−μσ" role="presentation">z=x−μσz=x−μσ 表 ...

  7. python scipy stats学习笔记

    from scipy.stats import chi2 # 卡方分布from scipy.stats import norm # 正态分布from scipy.stats import t # t分 ...

  8. Scipy的stats模块包含了多种概率分布的随机变量,随机变量分为连续和离散两种。+忽略程序中警告信息+np.newaxis解释

  9. 利用Python进行数据分析(1) 简单介绍

    一.处理数据的基本内容 数据分析 是指对数据进行控制.处理.整理.分析的过程. 在这里,“数据”是指结构化的数据,例如:记录.多维数组.Excel 里的数据.关系型数据库中的数据.数据表等. 二.说说 ...

随机推荐

  1. Python_模块介绍

    模块:一组或者一个.py文件实现了某个功能的代码集合 模块分为三种: 自定义模块 内置标准模块(又称标准库):Python自带的模块 开源模块:自己写的模块,有可以供人使用的功能 开源模块的集散地:P ...

  2. vue $mount 和 el的区别

    两者在使用效果上没有任何区别,都是为了将实例化后的vue挂载到指定的dom元素中. 如果在实例化vue的时候指定el,则该vue将会渲染在此el对应的dom中,反之,若没有指定el,则vue实例会处于 ...

  3. P1120 小木棍 [数据加强版] 回溯法 终极剪枝

    题目描述 乔治有一些同样长的小木棍,他把这些木棍随意砍成几段,直到每段的长都不超过5050. 现在,他想把小木棍拼接成原来的样子,但是却忘记了自己开始时有多少根木棍和它们的长度. 给出每段小木棍的长度 ...

  4. Codefoces Gym 101652 【最大连续和】

    <题目链接> 题目大意: 给你一段只由 'B'和'R'组成的字符串,问你在连续的区间内,"B"和"R"的差值最大是多少,输出该区间:如果对于差值相等 ...

  5. python专题 --- 递归

    如果一个函数在函数内部调用自身本身,这个函数就是递归函数 举例如阶乘函数,其数学递归定义如下: 对应的算法实现 def fact(n): if n==1: return 1 return n * fa ...

  6. Django报错:提交表单报错---RuntimeError: You called this URL via POST, but the URL doesn’t end in a slash and you have APPEND_SLASH set.

    Django报错:提交表单报错---RuntimeError: You called this URL via POST, but the URL doesn’t end in a slash and ...

  7. spring mvc简单介绍xml版

    spring mvc介绍:其实spring mvc就是基于servlet实现的,只不过他讲请求处理的流程分配的更细致而已. spring mvc核心理念的4个组件: 1.DispatcherServl ...

  8. Linux ubantu中安装虚拟/使用环境virtualenv以及python flask框架

    今天学习了python flask框架的安装过程以及使用案例,感觉网上讲的东西都没有从我们这种初学者的角度去考虑(哈哈),最后还是奉上心得: 1.安装virtualenv $ sudo apt-get ...

  9. 服务端spark gbdt模型计算性能优化

    服务端使用训练出来的模型,spark模型计算第一步是实现spark模型加载. 线上服务对用户体验影响极大,故需要对模型使用进行优化. 1.多线程并发进行计算,线上两个服务.优化cpu 2.在扩召回集, ...

  10. CactiEZ安装与配置-监控网卡流量

    1.1. 环境 本例CactiEZ-10.1-x86_64.iso下载地址 https://pan.baidu.com/s/1vivDJqpgtoBXRLm2D-bBTQ 密码:u12l 测试环境 服 ...