题意:

给定一个序列,以最小代价将其变成单调不增或单调不减序列,代价为Σabs(i变化后-i变化前),序列长度<=2000,单个数字<=1e9

输入:(第一行表示序列长度,之后一行一个表示序列第i的大小)

7
1
3
2
4
5
3
9

输出:(代价)

  3
分析:
这道题有bug,只要求单调不减序列
首先,对于这种问题,我们容易想到DP
记dp[i][j]为处理到i个,最高的为j
那我们的dp[i][j]=min(dp[i-1][k])+abs(j-h[i]) (k<=j)
但是显然数字太大了,我们需要离散化
先把序列从小到大排序,存在另一个数组b[]里
把j记成第j大的,那么状态转移方程为dp[i][j]=min(dp[i-1][k])+abs(b[j]-h[i]) (k<=j)
这样空间复杂度就够了
但时间复杂度还不够
我们仔细观察可以发现,dp[i-1][k]的每次从1开始循环找最小值是浪费的
我们在j从小到大循环上来的时候,就记录下最小值mn,那么转移方程就优化成dp[i][j]=mn+abs(b[j]-h[i])
至此,本题解决。
(提示:开long long,inf要开大!)
Code:
 #include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define RG register ll
#define rep(i,a,b) for(RG i=a;i<=b;++i)
#define per(i,a,b) for(RG i=a;i>=b;--i)
#define ll long long
#define inf (1<<30)
#define maxn 2005
using namespace std;
ll n;
ll a[maxn],b[maxn],dp[maxn][maxn];
inline ll read()
{
ll x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} void work()
{
rep(i,,n)
{
ll mn=inf;
rep(j,,n)
{
mn=min(mn,dp[i-][j]);
dp[i][j]=(a[i]-b[j]>=?a[i]-b[j]:b[j]-a[i])+mn;
}
}
ll ans=inf;
rep(i,,n) ans=min(ans,dp[n][i]);
cout<<ans;
} int main()
{
n=read();
rep(i,,n) a[i]=b[i]=read();
sort(b+,b++n);
work();
return ;
}

Making the Grade [POJ3666] [DP]的更多相关文章

  1. [poj3666]Making the Grade(DP/左偏树)

    题目大意:给你一个序列a[1....n],让你求一个序列b[1....n],满足 bi =a && bc,则最小的调整可以是把b变成c. 所以归纳可知上面结论成立. dp[i][j] ...

  2. 【POJ3666】Making the Grade 离散化+DP

    学到了一个引理:在满足S最小化的条件下,一定存在一种构造序列B的方案,使得序列B中的数值都来自于A中.(数学归纳法+中位数定理得证) 对于状态的表示来说,首先肯定有一个 i ,表示选到了第 i 个数时 ...

  3. LG2893/POJ3666 「USACO2008FEB」Making the Grade 线性DP+决策集优化

    问题描述 LG2893 POJ3666 题解 对于\(A\)中的每一个元素,都将存在于\(B\)中. 对\(A\)离散化. 设\(opt_{i,j}\)代表\([1,i]\),结尾为\(j\)的最小代 ...

  4. poj3666/CF714E/hdu5256/BZOJ1367(???) Making the Grade[线性DP+离散化]

    给个$n<=2000$长度数列,可以把每个数改为另一个数代价是两数之差的绝对值.求把它改为单调不增or不减序列最小代价. 话说这题其实是一个结论题..找到结论应该就很好做了呢. 手玩的时候就有感 ...

  5. POJ - 3666 Making the Grade(dp+离散化)

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...

  6. poj 3666 Making the Grade(离散化+dp)

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...

  7. poj 3666 Making the Grade(dp离散化)

    Making the Grade Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7068   Accepted: 3265 ...

  8. Poj 3666 Making the Grade (排序+dp)

    题目链接: Poj 3666 Making the Grade 题目描述: 给出一组数,每个数代表当前位置的地面高度,问把路径修成非递增或者非递减,需要花费的最小代价? 解题思路: 对于修好的路径的每 ...

  9. Making the Grade(POJ3666)

    题目大意: 给出长度为n的整数数列,每次可以将一个数加1或者减1,最少要多少次可以将其变成单调增或者单调减(不严格). 题解: 1.一开始我有一个猜想,就是不管怎么改变,最终的所有数都是原来的某个数. ...

随机推荐

  1. 微信小程序--WXS---JS 代码插入

    主页要使用的JS代码放在index.js里面 例 Page({ data: { array: [1, 2, 3, 4, 5, 1, 2, 3, 4] } }) 只复制以下这段 data: { arra ...

  2. 跨域 XMLHttpRequest对象

    XMLHttpRequest对象是ajax编程的基础,用于发送请求(数据)与服务端进行交互. 目前主流浏览器都内置了XMLHttpRequest对象. 浏览器会使用XMLHttpRequest对象来创 ...

  3. TagCanvas 插件

    TagCanvas是一个基于HTML5 Canvas技术开发的标签云动画.还提供一个以jQuery插件形式实现的版本. 它支持文本和图片两种格式,能够以Sphere, hcylinder 或 vcyl ...

  4. [转] css3变形属性transform

    w3c上的例子是这样子写的:· div { transform:rotate(7deg); -ms-transform:rotate(7deg); /* IE 9 */ -moz-transform: ...

  5. canvas给图片加水印

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. noip斗地主

    题解: 5分钟看题 25分钟码完 然后调了一下 样例1s??? 好吧我把只出一张牌当成决策了.. 判断了一下前面没有出牌再考虑这个决策(是不是傻逼??) 交上去65 于是愉快的改状压 改到一半的时候想 ...

  7. alpha冲刺3/10

    目录 摘要 团队部分 个人部分 摘要 队名:小白吃 组长博客:hjj 作业博客:冲刺3 团队部分 后敬甲(组长) 过去两天完成了哪些任务 文字描述 组织第一次团队编程 继续阅读小程序开发文档 接下来的 ...

  8. web前端中navigator

    <script> if(navigator.cookieEnabled){ document.write("浏览器已启用cookie,请妥善保存个人信息"); }els ...

  9. 046 SparlSQL中的函数

    一:SparkSQL中的函数 1.说明 2.展示所有的函数 qlContext.sql("show functions").show(300) 3.functions类 所有内置支 ...

  10. Ubuntu 硬盘分区只读,重新挂载为读写分区之后,文件依然创建出错

    原因: 分区只读,可能是windows没有正常关机,或者使用了混合休眠模式. 解决方案: sudo mount -o remount,rw /dev/sdaX 若重新挂载后,创建文件以及文件夹失败: ...