如果知道了树的形态,那么可以树形DP,每个时刻只需要计算必选根的独立集个数以及必不选根的独立集个数。

那么现在知道独立集个数,要构造出树,可以考虑DP这棵树的形态,然后将之前树形DP的值作为现在DP的状态,即$dp[i][j]$表示必选根的独立集个数为$i$,必不选根的独立集个数为$j$时,树的节点数最少是多少。

那么完成这个DP之后,输出方案只需要沿着最优值来的顺序dfs输出即可。

#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<string.h>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<time.h>
#include<assert.h>
#include<iostream>
using namespace std;
typedef long long LL;
typedef pair<int,int>pi;
const int Inf=100;
int cnt;
int dp[2020][2020];
struct Node{
short i,j,x,y;
Node(){}
Node(short i,short j,short x,short y):i(i),j(j),x(x),y(y){}
};
Node pre[2020][2020];
void dfs(int u,int x,int y){
if(x==1&&y==1)return ;
//printf("x=%d y=%d\n",x,y);
dfs(u,pre[x][y].i,pre[x][y].j);
++cnt;
printf("%d %d\n",u,cnt);
dfs(cnt,pre[x][y].x,pre[x][y].y);
}
vector<int>V[3000];
int main(){
int tl=0;
for(int i=1;i<=2005;i++){
for(int j=i;j<=2005;j+=i)V[j].push_back(i);
}
for(int i=0;i<2020;i++)for(int j=0;j<2020;j++)dp[i][j]=Inf;
dp[1][1]=1;
for(int i=1;i<=2005;i++){
for(int j=1;j<=2005;j++){
if(dp[i][j]>15)continue;
for(int y=1;y*i<=2005;y++){
for(int x=1;(x+y)*j<=2005;x++){
int tmp=dp[i][j]+dp[x][y];
int nx=y*i,ny=j*(x+y);
if(dp[nx][ny]>tmp){
dp[nx][ny]=tmp;
pre[nx][ny]=Node(i,j,x,y);
}
tl++;
}
}
for(int y=1;y*(i+j)<=2005;y++){
for(int x=1;x*j<=2005;x++){
int tmp=dp[i][j]+dp[x][y];
int nx=j*x,ny=y*(i+j);
if(dp[nx][ny]>tmp){
dp[nx][ny]=tmp;
pre[nx][ny]=Node(x,y,i,j);
}
tl++;
}
} }
}
/*
for(int nx=1;nx<=2005;nx++){
for(int ny=1;ny<=2005;ny++){
if(nx==1&&ny==1){dp[nx][ny]=1;continue;}
for(int it1=0;it1<V[nx].size();it1++){
for(int it2=0;it2<V[ny].size();it2++){
int i=V[nx][it1],j=V[ny][it2];
int y=nx/i,x=ny/j-y;
if(x>=1&&y>=1&&dp[i][j]+dp[x][y]<dp[nx][ny]){
dp[nx][ny]=dp[i][j]+dp[x][y];
pre[nx][ny]=Node(i,j,x,y);
}
tl++;
}
}
}
}
*/
//printf("tl=%d\n",tl);
int _;scanf("%d",&_);
while(_--){
int m;
scanf("%d",&m);
//for(int tm=1;tm<=2000;tm++){
// m=tm+1;
m++;
bool flag=0;
int sx=-1,sy;
for(int i=0;i<=m;i++){
if(dp[i][m-i]<=15){
sx=i;sy=m-i;
break;
}
}
if(sx<0)puts("-1");
else{
printf("%d\n",dp[sx][sy]);
cnt=1;
dfs(1,sx,sy);
}
}
return 0;
}

  

ZOJ3951 : Independent Set的更多相关文章

  1. 写一个程序可以对两个字符串进行测试,得知第一个字符串是否包含在第二个字符串中。如字符串”PEN”包含在字符串“INDEPENDENT”中。

    package lovo.test; import java.util.Scanner; public class Java { @param args public static void main ...

  2. Deep Learning 13_深度学习UFLDL教程:Independent Component Analysis_Exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程.Deep learning:三十三(ICA模型).Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机 ...

  3. [ZZ] KlayGE 游戏引擎 之 Order Independent Transparency(OIT)

    转载请注明出处为KlayGE游戏引擎,本文的永久链接为http://www.klayge.org/?p=2233 http://dogasshole.iteye.com/blog/1429665 ht ...

  4. Andrew Ng机器学习公开课笔记–Independent Components Analysis

    网易公开课,第15课 notes,11 参考, PCA本质是旋转找到新的基(basis),即坐标轴,并且新的基的维数大大降低 ICA也是找到新的基,但是目的是完全不一样的,而且ICA是不会降维的 对于 ...

  5. Questions that are independent of programming language. These questions are typically more abstract than other categories.

    Questions that are independent of programming language.  These questions are typically more abstract ...

  6. Interview-Largest independent set in binary tree.

    BT(binary tree), want to find the LIS(largest independent set) of the BT. LIS: if the current node i ...

  7. 【转】NDK编译可执行文件在Android L中运行显示error: only position independent executables (PIE) are supported.失败问题解决办法。

    原文网址:http://blog.csdn.net/hxdanya/article/details/39371759 由于使用了NDK编译的可执行文件在应用中调用,在4.4及之前的版本上一直没出问题. ...

  8. 基于Hama并联平台Finding a Maximal Independent Set 设计与实现算法

    笔者:白松 NPU学生. 转载请注明出处:http://blog.csdn.net/xin_jmail/article/details/32101483. 本文參加了2014年CSDN博文大赛,假设您 ...

  9. More than one file was found with OS independent path 錯誤

    More than one file was found with OS independent path 'lib/armeabi/libmrpoid.so',. 翻譯過來就是:在操作系統的獨立目錄 ...

随机推荐

  1. Java+selenium之WebDriver的常用方法封装(八)

    总结:WEB UI自动化测试一般采用 POP(面向页面编程),自动化测试框架分三层,有时如果页面如果太多,不好管理,可以面向控件编程,即把控件当作页面,毕竟控件是有限的,所以封装页面的代码量会少很多, ...

  2. 2017-2018-2 20165206 实验三 《敏捷开发与XP实践》实验报告

    2017-2018-2 20165206 实验三 <敏捷开发与XP实践>实验报告 一.实验报告封面 课程:Java程序设计 班级:1652班 姓名:韩啸 学号:20165206 指导教师: ...

  3. GAN-生成手写数字-Keras

    from keras.models import Sequential from keras.layers import Dense from keras.layers import Reshape ...

  4. SSD垃圾回收

    A complete GC typically:includes four steps: selecting some blocks that contain somestale data as vi ...

  5. Java中的IO流总结

    Java中的IO流总结 1. 流的继承关系,以及字节流和字符流. 2. 节点流FileOutputStream和FileInputStream和处理流BufferedInputStream和Buffe ...

  6. html5 之 local storage \sessjion storage

    转载: HTMl5的sessionStorage和localStorage html5中的Web Storage包括了两种存储方式:sessionStorage和localStorage. sessi ...

  7. [转]Ubuntu默认使用root用户登录并免去输入密码

    启用Root用户登录 Ctrl + Alt + T进入终端, 输入cd /usr/share/lightm/ightm.conf.d, 如果提示你没有那个文件或目录.那就一次次的进入目录. 进入之后会 ...

  8. 利用vcard和qrcode.js生成二维码导入联系人

    vCard是一种容许交换个人信息的数据规范,vCard数据格式的标识符是VCARD,vCard数据格式行是: 类型 [;参数]:值,具体的介绍百度都有,我们可以通过vcard来进行通讯录的保存,名片的 ...

  9. js自定义滚动样式

    <!DOCTYPE html> <html lang="en"> <head> <style type='text/css'> ht ...

  10. 洛谷3825 [NOI2017]游戏 2-sat

    原文链接http://www.cnblogs.com/zhouzhendong/p/8146041.html 题目传送门 - 洛谷3825 题解 我们考虑到地图中x的个数很少,最多只有8个. 所以我们 ...