Bayes for Beginners: Probability and Likelihood 好好看,非常有用。

以前死活都不理解Probability和Likelihood的区别,为什么这两个东西的条件反一下就相等。

定义:

Probability是指在固定参数的情况下,事件的概率,必须是0-1,事件互斥且和为1. 我们常见的泊松分布、二项分布、正态分布的概率密度图描述的就是这个。

Likelihood是指固定的结果,我们的参数的概率,和不必为1,不必互斥,所以只有ratio是有意义的。

至于为什么L=P,这是因为定义就是这样的,wiki解释得非常清楚。

Likelihood function

Consider a simple statistical model of a coin flip, with a single parameter  that expresses the "fairness" of the coin. This parameter is the probability that a given coin lands heads up ("H") when tossed.  can take on any numeric value within the range 0.0 to 1.0. For a perfectly fair coin,  = 0.5.

Imagine flipping a coin twice, and observing the following data : two heads in two tosses ("HH"). Assuming that each successive coin flip is IID, then the probability of observing HH is

Hence: given the observed data HH, the likelihood that the model parameter  equals 0.5, is 0.25. Mathematically, this is written as

This is not the same as saying that the probability that , given the observation HH, is 0.25. (For that, we could apply Bayes' theorem, which implies that the posterior probability is proportional to the likelihood times the prior probability.)

Suppose that the coin is not a fair coin, but instead it has . Then the probability of getting two heads is

Hence

More generally, for each value of , we can calculate the corresponding likelihood. The result of such calculations is displayed in Figure 1.

In Figure 1, the integral of the likelihood over the interval [0, 1] is 1/3. That illustrates an important aspect of likelihoods: likelihoods do not have to integrate (or sum) to 1, unlike probabilities.

Probability和Likelihood的区别的更多相关文章

  1. [Bayes] Understanding Bayes: A Look at the Likelihood

    From: https://alexanderetz.com/2015/04/15/understanding-bayes-a-look-at-the-likelihood/ Reading note ...

  2. BDA3 Chapter 1 Probability and inference

    1. uncertainty aleatoric uncertainty 偶然不确定性 epistemic uncertainty 认知不确定性 2. probability VS likelihoo ...

  3. Bayesian Statistics for Genetics | 贝叶斯与遗传学

    Common sense reduced to computation - Pierre-Simon, marquis de Laplace (1749–1827) Inventor of Bayes ...

  4. (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem

    2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...

  5. Andrew Ng机器学习公开课笔记 -- 线性回归和梯度下降

    网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个 ...

  6. 机器学习-Probabilistic interpretation

    Probabilistic interpretation,概率解释  解释为何线性回归的损失函数会选择最小二乘 表示误差,表示unmodeled因素或随机噪声,真实的y和预测出来的值之间是会有误差的, ...

  7. Normalizing flows

    probability VS likelihood: https://zhuanlan.zhihu.com/p/25768606 http://sdsy888.me/%E9%9A%8F%E7%AC%9 ...

  8. graph generation model

    Generative Graph Models 第八章传统的图生成方法> The previous parts of this book introduced a wide variety of ...

  9. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

随机推荐

  1. Gym 101194C / UVALive 7899 - Mr. Panda and Strips - [set][2016 EC-Final Problem C]

    题目链接: http://codeforces.com/gym/101194/attachments https://icpcarchive.ecs.baylor.edu/index.php?opti ...

  2. 数组/Array/Tuple/yield

    数组 如果需要使用同一类型的多个对象,就可以考虑使用集合和数组.如果需要使用不同类型的多个对象,可以考虑使用Tuple(元组) 数组的声明 在声明数组时,应先定义数组元素中的类型,其后是一对空方括号和 ...

  3. post方式接口测试(一)_新建测试用例

    第一种方式:拷贝别人的 第二种方式:自己创建 二.打开浏览器(此处chrome),F12打开开发模式,输入网址登录,此时可获取到登录的 Request URL 二.打开postman,进入自己的Col ...

  4. VUE—打印(原生态网页打印)

    //打印触发的方法 print(e){ let subOutputRankPrin = document.getElementById('printcode'); var options = { fo ...

  5. python发送html格式的邮件

    python发邮件 #!/usr/bin/python # -*- coding: UTF-8 -*- import smtplib from email.mime.text import MIMET ...

  6. 【JVM】-NO.113.JVM.1 -【JDK11 HashMap详解-0-全局-put】

    Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...

  7. 求职季全攻略:优秀的UX设计师作品集该如何准备?

    这是一篇关于如何制作杰出的UX设计师作品集,看了下文,我们在2019年冲冲冲~制作出自己的作品集! 转自墨刀公众号. Paul Rand 曾经说:“设计很简单,因而也复杂.” 也许你已经掌握了所有的U ...

  8. 正则表达式(re模块)

    s='hello world' print(s.find('llo')) #找到llo ret=s.replace('ll','xx') #用xx代替ll print(ret) print(s.spl ...

  9. Docker Registry V2 with Nginx

    安装 nginx 修改/etc/yum.repos.d/nginx.repo [nginx] name=nginx repo baseurl=http://nginx.org/packages/cen ...

  10. axios的封装

    function axios(options){ var promise = new Promise((resolve,reject)=>{ var xhr = null; if(window. ...