Luogu3297 SDOI2013逃考(半平面交+最短路)
把每个人的监视范围看成点,相邻的两个监视范围连边,那么跑一遍最短路就可以了(事实上边权都为1可以直接bfs)。显然存在最优路线没有某个时刻同时被多于两人监视,要到达另一个区域的话完全可以经过分界线而不是和其他区域的交点(若两个区域只有一个交点的话是不能直接到达的),总之就是说不用特判同时被多人监视的情况。
现在问题是怎么求出哪些监视范围相邻。考虑对于某个人的监视范围求出所有与它相邻的。两个监视范围的公共边是这两个人连线的中垂线,把这些线画出来可以发现求个半平面交就好了。注意线要求在矩形范围内。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 610
#define vector dot
int T,n,p[N],d[N],queue[N],cnt;
bool flag[N];
const double eps=1E-;
struct data{int to,nxt;
}edge[N*N];
struct dot
{
double x,y;
vector operator +(const vector&a) const
{
return (vector){x+a.x,y+a.y};
}
vector operator -(const vector&a) const
{
return (vector){x-a.x,y-a.y};
}
double operator *(const vector&a) const
{
return x*a.y-y*a.x;
}
vector operator *(const double a) const
{
return (vector){a*x,a*y};
}
double len()
{
return sqrt(x*x+y*y);
}
vector rotate()
{
return (vector){-y,x};
}
}a[N],P[N];
struct line
{
dot a;vector p;int i;
bool operator <(const line&a) const
{
return atan2(p.x,p.y)>atan2(a.p.x,a.p.y);
}
}q[N],Q[N];
void addedge(int x,int y){cnt++;edge[cnt].to=y,edge[cnt].nxt=p[x],p[x]=cnt;}
bool onright(line x,dot y)
{
return (y-x.a)*x.p>=;
}
dot cross(line x,line y)
{
return y.a+y.p*(x.p*(x.a-y.a)/(x.p*y.p));
}
int bfs(int S)
{
memset(d,,sizeof(d));
int head=,tail=;queue[]=S;d[S]=;
do
{
int x=queue[++head];
for (int i=p[x];i;i=edge[i].nxt)
if (d[x]+<d[edge[i].to])
{
d[edge[i].to]=d[x]+;
queue[++tail]=edge[i].to;
if (!edge[i].to) return d[edge[i].to];
}
}while (head<tail);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("3297.in","r",stdin);
freopen("3297.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
T=read();
while (T--)
{
n=read();
int r=read(),c=read();
dot s;s.x=read(),s.y=read();
for (int i=;i<=n;i++)
a[i].x=read(),a[i].y=read();
int S;
double dis=(a[]-s).len();
for (int i=;i<=n;i++) dis=min(dis,(a[i]-s).len());
for (int i=;i<=n;i++) if (fabs(dis-(a[i]-s).len())<eps) S=i;
cnt=;
memset(p,,sizeof(p));
for (int j=;j<=n;j++)
{
int t=;
for (int i=;i<=n;i++)
if (i!=j) q[++t]=(line){(a[i]+a[j])*0.5,(a[i]-a[j]).rotate(),i};
q[++t]=(line){(dot){,},(vector){,},};
q[++t]=(line){(dot){r,},(vector){,},};
q[++t]=(line){(dot){r,c},(vector){-,},};
q[++t]=(line){(dot){,c},(vector){,-},};
sort(q+,q+t+);
int head=,tail=;Q[]=q[];
for (int i=;i<=t;i++)
{
while (head<tail&&onright(q[i],P[tail])) tail--;
while (head<tail&&onright(q[i],P[head+])) head++;
Q[++tail]=q[i];
if (fabs(Q[tail-].p*Q[tail].p)<eps)
{
tail--;
if (onright(q[i],Q[tail].a)) Q[tail]=q[i];
}
if (head<tail) P[tail]=cross(Q[tail],Q[tail-]);
}
while (head<tail&&onright(Q[head],P[tail])) tail--;
P[head]=cross(Q[head],Q[tail]);
for (int i=head;i<=tail;i++) addedge(j,Q[i].i);
}
printf("%d\n",bfs(S));
}
return ;
}
Luogu3297 SDOI2013逃考(半平面交+最短路)的更多相关文章
- BZOJ3199 SDOI2013 逃考 半平面交、最短路
传送门 如果我们对于每一个点能找到与其相邻的点(即不经过其他点监视范围能够直接到达其监视范围的点)和是否直接到达边界,就可以直接BFS求最短路求出答案. 所以当前最重要的问题是如何找到对于每一个点相邻 ...
- 洛谷 P3297 [SDOI2013]逃考 解题报告
P3297 [SDOI2013]逃考 题意 给一个平面矩形,里面有一些有标号点,有一个是人物点,人物点会被最近的其他点控制,人物点要走出矩形,求人物点最少被几个点控制过. 保证一开始只被一个点控制,没 ...
- luogu P3297 [SDOI2013]逃考
传送门 gugugu 首先每个人管理的区域是一个多边形,并且整个矩形是被这样的多边形填满的.现在的问题是求一条经过多边形最少的路径到达边界,这个可以最短路. 现在的问题是建图,显然我们应该给相邻的多边 ...
- P3297 [SDOI2013]逃考
传送门 完全看不出这思路是怎么来的-- 首先对于两个亲戚,他们监视范围的边界是他们连线的中垂线.那么对于一个亲戚来说它能监视的范围就是所有的中垂线形成的半平面交 然后如果某两个亲戚的监视范围有公共边, ...
- [JZOJ3297] 【SDOI2013】逃考
题目 我发现我现在连题面都懒得复制粘贴了-- 题目大意 在一个矩形中有一堆点,这堆点按照以下规则将矩形瓜分成一堆块: 对于每个坐标,它属于离它最近的点的块. 一个人从某个坐标出发到矩形外面,求经过的最 ...
- 【JZOJ3297】【SDOI2013】逃考(escape)
Mission 高考又来了,对于不认真读书的来讲真不是个好消息.为了小杨能在家里认真读书,他的亲戚决定驻扎在他的家里监督他学习,有爷爷奶奶.外公外婆.大舅.大嫂.阿姨-- 小杨实在是忍无可忍了,这种生 ...
- 2018.10.15 bzoj4445: [Scoi2015]小凸想跑步(半平面交)
传送门 话说去年的省选计算几何难度跟前几年比起来根本不能做啊(虽然去年考的时候并没有学过计算几何) 这题就是推个式子然后上半平面交就做完了. 什么? 怎么推式子? 先把题目的概率转换成求出可行区域. ...
- 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)
按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...
- 【BZOJ-2618】凸多边形 计算几何 + 半平面交 + 增量法 + 三角剖分
2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 959 Solved: 489[Submit][Status] ...
随机推荐
- linxu系统知识和简单命令
Linux目录基本知识 / 根目录 /bin 存放必要的命令 (binary) /boot 存放内核以及启动所需的文件(引导/自引/启动/开机程序) /dev 存放设备文件 (devices) /et ...
- ${pageContext.request.contextPath}的作用【转载】
原文地址:http://ps329795485-126-com.iteye.com/blog/1290662 刚开始不知道是怎么回事,在网上也查找了一些资料,看了还是晕. 看了另一个大侠的,终于有了点 ...
- ASP.NET Core 防止跨站请求伪造(XSRF/CSRF)攻击 (转载)
什么是反伪造攻击? 跨站点请求伪造(也称为XSRF或CSRF,发音为see-surf)是对Web托管应用程序的攻击,因为恶意网站可能会影响客户端浏览器和浏览器信任网站之间的交互.这种攻击是完全有可能的 ...
- VB6 加密解密字符串
Public Function EnCodeStr(ByVal password As String) As String Dim il_bit, il_x, il_y, il_z, il_len, ...
- Ionic2 调用Custom Cordova Plugin方法
APP升级到Ionic2之后,如何调用自己写的pulgin,一直测试不成功,现记录这一经过. plugin目前可以分为3类,A类是ionic-native自带的,可以直接导入Typescript类,直 ...
- Luogu P1494 [国家集训队]小Z的袜子
比较简单的莫队题,主要是为了熟练板子. 先考虑固定区间时我们怎么计算,假设区间\([l,r]\)内颜色为\(i\)的袜子有\(cnt_i\)只,那么对于颜色\(i\)来说,凑齐一双的情况个数为: \( ...
- Luogu P3388 【模板】割点(割顶)
一道求割点的板子题.还是采用经典的Tarjan算法. 首先大致和Tarjan求强连通分量相似,都是用\(dfn_x\)表示访问到\(x\)的时间(时间戳),\(low_x\)表示通过\(x\)回边能走 ...
- 解读tensorflow之rnn
from: http://lan2720.github.io/2016/07/16/%E8%A7%A3%E8%AF%BBtensorflow%E4%B9%8Brnn/ 这两天想搞清楚用tensorfl ...
- http指南(2)--代理
代理 单个客户端专用的代理称为私有代理,众多客户端共享的代理被称为公共代理 代理与网关的对比:代理连接的是两个或多个使用相同协议的应用程序,而网关连接的则是两个或多个使用不同协议的端点.网关扮演的是“ ...
- C. Oh Those Palindromes
题意 给以一个字符串,让你重排列,使得回文子串的数目最多 分析 对于一个回文串,在其中加入一些字符并不会使回文子串的个数增加,所以对于相同的字符一起输出即可,我是直接排序 代码 #include< ...