题目描述

输入

数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数。 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号。 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路。 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A。 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连。

输出

输出1个实数,四舍五入保留三位小数,表示平均多少个时间单位后聪聪会把可可吃掉。

样例输入

【输入样例1】
4 3
1 4
1 2
2 3
3 4
【输入样例2】
9 9
9 3
1 2
2 3
3 4
4 5
3 6
4 6
4 7
7 8
8 9

样例输出

【输出样例1】
1.500
【输出样例2】
2.167

提示

【样例说明1】
开始时,聪聪和可可分别在景点1和景点4。
第一个时刻,聪聪先走,她向更靠近可可(景点4)的景点走动,走到景点2,然后走到景点3;假定忽略走路所花时间。
可可后走,有两种可能:
第一种是走到景点3,这样聪聪和可可到达同一个景点,可可被吃掉,步数为1,概率为 。
第二种是停在景点4,不被吃掉。概率为 。
到第二个时刻,聪聪向更靠近可可(景点4)的景点走动,只需要走一步即和可可在同一景点。因此这种情况下聪聪会在两步吃掉可可。
所以平均的步数是1* +2* =1.5步。

对于所有的数据,1≤N,E≤1000。
对于50%的数据,1≤N≤50。

 
总体来说不是太难,只要把题里需要的信息都求出来按题目要求做就行。
SPFA求出以每个点为源点的最短路并用一个数组记录每个点能到达的点有哪些顺便维护出每个点的度。
通过前两个信息就能求出从一个点到另一个点的途中下一步会走向哪个点。
因为最终结束状态不确定,我们可以记忆化搜索,f[i][j]代表聪聪在i点,可可在j点时聪聪抓到可可的期望时间,按题目要求转移就行了。
具体实现看代码吧。

#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<stack>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define ld long double
#define pr pair<int,int>
using namespace std;
int tot;
int vis[1010];
int head[1010];
int to[2010];
int next[2010];
double f[1010][1010];
int d[1010][1010];
int n,m;
int x,y;
int a,b;
int g[1010];
int w[1010][1010];
int p[1010][1010];
queue<int>q;
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void SPFA(int S)
{
memset(d[S],0x3f,sizeof(d[S]));
d[S][S]=0;
q.push(S);
while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=0;
for(int i=head[now];i;i=next[i])
{
if(d[S][to[i]]>d[S][now]+1)
{
d[S][to[i]]=d[S][now]+1;
if(!vis[to[i]])
{
vis[to[i]]=1;
q.push(to[i]);
}
}
}
}
}
double dfs(int s,int t)
{
if(f[s][t]!=0)
{
return f[s][t];
}
if(s==t)
{
return f[s][t]=(double)0;
}
if(p[p[s][t]][t]==t)
{
return f[s][t]=(double)1;
}
if(p[s][t]==t)
{
return f[s][t]=(double)1;
}
for(int i=1;i<=g[t];i++)
{
f[s][t]+=dfs(p[p[s][t]][t],w[t][i])/(g[t]+1);
}
f[s][t]+=dfs(p[p[s][t]][t],t)/(g[t]+1);
f[s][t]+=1;
return f[s][t];
}
int main()
{
scanf("%d%d%d%d",&n,&m,&a,&b);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
g[x]++;
g[y]++;
w[x][g[x]]=y;
w[y][g[y]]=x;
}
for(int i=1;i<=n;i++)
{
SPFA(i);
}
memset(p,0x7f,sizeof(p));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=g[i];j++)
{
for(int k=1;k<=n;k++)
{
if(d[i][k]==d[w[i][j]][k]+1&&p[i][k]>w[i][j])
{
p[i][k]=w[i][j];
}
}
}
}
printf("%.3f",dfs(a,b));
}

BZOJ1415[Noi2005]聪聪和可可——记忆化搜索+期望dp的更多相关文章

  1. BZOJ 1415: [Noi2005]聪聪和可可(记忆化搜索+期望)

    传送门 解题思路 还是比较简答的一道题.首先\(bfs\)把每个点到其他点的最短路求出来,然后再记忆化搜索.记搜的时候猫的走法是确定的,搜一下老鼠走法就行了. 代码 #include<iostr ...

  2. 记忆化搜索(DFS+DP) URAL 1223 Chernobyl’ Eagle on a Roof

    题目传送门 /* 记忆化搜索(DFS+DP):dp[x][y] 表示x个蛋,在y楼扔后所需要的实验次数 ans = min (ans, max (dp[x][y-i], dp[x-1][i-1]) + ...

  3. 记忆化搜索(DFS+DP) URAL 1501 Sense of Beauty

    题目传送门 /* 题意:给了两堆牌,每次从首部取出一张牌,按颜色分配到两个新堆,分配过程两新堆的总数差不大于1 记忆化搜索(DFS+DP):我们思考如果我们将连续的两个操作看成一个集体操作,那么这个操 ...

  4. 【BZOJ 1415】 1415: [Noi2005]聪聪和可可 (bfs+记忆化搜索+期望)

    1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1640  Solved: 962 Description I ...

  5. hdu3555 Bomb (记忆化搜索 数位DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=3555 Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  6. HDU 2476 String painter(记忆化搜索, DP)

    题目大意: 给你两个串,有一个操作! 操作时可以把某个区间(L,R) 之间的所有字符变成同一个字符.现在给你两个串A,B要求最少的步骤把A串变成B串. 题目分析: 区间DP, 假如我们直接想把A变成B ...

  7. hdu_3562_B-number(记忆化搜索|数位DP)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=3652 题意:给你一个n,为比n小的能整除13并数字中有13的数有多少个 题解:记忆化搜索:记dp[i] ...

  8. POJ-1088 滑雪 (记忆化搜索,dp)

    滑雪 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 86318 Accepted: 32289 Description Mich ...

  9. HDU 4597 Play Game (记忆化搜索博弈DP)

    题意 给出2*n个数,分两列放置,每列n个,现在alice和bob两个人依次从任意一列的对头或队尾哪一个数,alice先拿,且两个人都想拿最多,问alice最后能拿到数字总和的最大值是多少. 思路 4 ...

随机推荐

  1. fragment The specified child already has a parent. You must call removeView()

    在切换Fragment的时候出现:The specified child already has a parent. You must call removeView()异常. 错误主要出在Fragm ...

  2. 洛谷 P2256 一中校运会之百米跑

    题目链接 https://www.luogu.org/problemnew/show/P2256 题目背景 在一大堆秀恩爱的**之中,来不及秀恩爱的苏大学神踏着坚定(?)的步伐走向了100米跑的起点. ...

  3. Luogu2183 礼物 ExLucas、CRT

    传送门 证明自己学过exLucas 这题计算的是本质不相同的排列数量,不难得到答案是\(\frac{n!}{\prod\limits_{i=1}^m w_i! \times (n - \sum\lim ...

  4. Redis命令总结 (转)

    Redis命令总结   连接操作相关的命令 quit:关闭连接(connection) auth:简单密码认证 持久化 save:将数据同步保存到磁盘 bgsave:将数据异步保存到磁盘 lastsa ...

  5. Android 真机调试

    /************************摘抄*****************************/ 刚好遇到这个问题,在网上百度了一下,看到有人分享了引起该问题的几个原因: 1.手机设 ...

  6. 【php增删改查实例】第十九节 - session的使用: 让服务器知道你是谁?

    因为HTTP请求是一种无状态的请求,所谓无状态,就是服务器不会记录下你本次请求的信息.http它是基于请求 - 相应模式的一种数据传输协议.就是说,你发送一个请求,我服务器给你一个响应,这件事情就算完 ...

  7. zookeeper Error contacting service 解决

    连接kafka集群,有一个kafka机器连接失败 到该kafka机器上查询kafka进程,发现没有, 再查看zookeeper状态,提示 Error contacting service. It is ...

  8. nginx下目录浏览及其验证功能、版本隐藏等配置记录

    工作中常常有写不能有网页下载东西的需求,在Apache下搭建完成后直接导入文件即可达到下载/显示文件的效果;而Nginx的目录列表功能默认是关闭的,如果需要打开Nginx的目录列表功能,需要手动配置, ...

  9. kvm虚拟化管理平台WebVirtMgr部署-完整记录(3)

    继下面三篇文章完成了kvm虚拟化管理平台webvirtmgr环境的部署安装:kvm虚拟化管理平台WebVirtMgr部署-虚拟化环境安装-完整记录(0)kvm虚拟化管理平台WebVirtMgr部署-完 ...

  10. jenkins 上命令各种找不到问题

    代码: 兵马未动,粮草先行 作者: 传说中的汽水枪 如有错误,请留言指正,欢迎一起探讨. 转载请注明出处.   在使用jenkins的时候,会使用一些命令行,有的时候明明在电脑的命令行(终端)可以执行 ...