Hadoop生态圈-大数据生态体系快速入门篇

                                      作者:尹正杰

版权声明:原创作品,谢绝转载!否则将追究法律责任。

一.大数据概念

1>.什么是大数据

  大数据(big data):是指无法在一定时间范围内用常规软件进行捕捉,管理和处理的数据集合,是需要新处理模式才能具有更强的决策力,洞察发现力和流程优化能力的海量,高增长率和多样化的信息资产。

  大数据技术主要解决两个问题,即海量的存储和海量的数据的分析计算。

2>.数据存储单位介绍

  按照顺序给出数据存储单位如:Bit,Byte,KB,MB,GB,TB,PB,EB,ZB,YB,BB,NB,DB。换算单位如下:

1Byte  =       Bit
1K = Byte
1MB = KB
1GB = MB
1TB = GB
1PB = TB
1EB = PB
1ZB = EB
1YB = ZB
1BB = YB
1NB = BB
1DB = NB

 3>.大数据特点

  大数据最明显的特点简单的来说就是四个V,即:Volume(大量),Velocity(高速),Variety(多样),Value(低价值密度)。

>.Volume(大量)
截止目前,人类生成的所有印刷材料的数据量是200PB,而历史上全人类总共说过的话的数据量大约是5EB,
当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。 >.Velocity(高速)
这是大数据区分与传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据
使用量将达到35.2ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。 >.Variety(多样)
这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以数据库/文本为主的
结构化数据,非结构化的数据越来越多,包括网络日志,音频,视频,图片,地理位置信息等等,这些多类型的数
据的处理能力提出了更高的要求。 >.Value(低价值密度)
价值密度的高低与数据总量的大小成反比,如何快速对有价值的数据“提纯”称为目前大数据背景下待解决的
难题。

 4>.企业的组织结构

  大数据工程师的岗位还是蛮紧缺的,尤其是在数据挖掘方向,其实从事大数据主要分三个方向,即大数据运维,大数据开发,大数据分析,其实大数据报表貌似跟大数据不咋搭边。下图是我在网上描述对企业大数据部门的一般组织结构,那么问题来了?如果你想要从事大数据工作,你会选择哪个方向呢?

二.从Hadoop框架讨论大数据生态圈

1>.Hadoop是什么

Hadoop是什么
>.Hadoop是一个由Apache基金会所开发的分布式洗头膏基础架构;
>.主要解决:海量数据的存储和海量数据的分析计算为题;
>.广义上来说,Hadoop通常是指一个更广泛的概念,它指的不仅仅是Hadoop这款软件,而是指的是Hadoop生态圈;

2>.Hadoop发展历史

Hadoop发展历史
>.Lunce-Doug开创的开源软件,用Java书写代码,实现与Google类似的全文搜索功能,它提供了全文检索引擎的架构,
包括完整的查询引擎和搜索引擎;
>.2001年年底称为Apache基金会的一个子项目;
>.对于大数据的场景,Luence面对与Google同样的困难;
>.学习和模仿Google解决这些问题的办法:微型版Nutch
>.可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文)
GFS ----催化剂----> HDFS
Map-Reduce ----催化剂----> MR
BigTable ----催化剂----> HBase
>.-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升;
>.2005年Hadoop作为Lucene的子项目,Nutch的一部分正式引入Apache基金会。2006年3月份,Map-Reduce和Nutch Distributed File System(NDFS)分别被纳入称为Hadoop的项目中
>.Hadoop的名字来源于Doug Cutting儿子的玩具大象;
>.Hadoop就此诞生并迅速发展,标志着大数据时代来临;

3>.Hadoop三大发行版本

Hadoop三大发行版本
>.Apache版本最原始(最基础)的版本,对于入门学习最好
2005年Hadoop作为Lucene的子项目,Nutch的一部分正式引入Apache基金会。2006年3月份,Map-Reduce和Nutch Distributed File System(NDFS)分别被纳入称为Hadoop的项目中。
官网地址:http://hadoop.apache.org/
>.Cloudera是大型企业互联网企业中的较多(按照技术服务收费)
2.1>.2008年成立的Coudera是最早将Hadoop商用的公司,为合作伙伴提供Hadoop的商用解决方案,主要包括支持,咨询服务,培训;
2.2>.2009年Hadoop的创始人Doug Cutting也加盟Cloudera公司。Cloudera产品主要为CDH,Cloudera Manager,Cloudera Support;
2.3>.CDH是Cloudera的Hadoop发行版,完全开源,比Apache Hadoop在兼容性,安全性,稳定性上有所增强;
2.4>.Coundera Manager是集群的软件分发及管理监控平台,开源在几个小时内部署好的一个Hadoop集群,并对集群的节点及服务进行实时监控。Cloudera Support即是对Hadoop的技术支持;
2.5>.Cloudera的标价为每年每个节点4000美元。Cloudera开发并贡献了可实时处理大数据的Impala项目。
官网地址:https://www.cloudera.com/downloads/cdh/5-10-0.html
下载地址:http://archive-primary.cloudera.com/cdh5/cdh/5/
>.Hortonworks文档比较好,它是后起之秀起步较晚
3.1>.2011年成立的Hortonworks是雅虎与硅谷风投公司Benchmark Capital合资组建;
3.2>.公司成立之初最吸纳了大约25名至30名专门研究Hadoop的雅虎工程师,上述工程师均在2005年开始协助雅虎开发Hadoop,贡献了Hadoop %的代码;
3.3>.雅虎工程副总裁,雅虎Hadoop开发团队负责人Eric Baldeschwieler 出任Hortonworks的首席执行官;
3.4>Hortonworks的主打产品是Hortonworks Data Platform(HDP),也同样是100%开源的产品,HDP除常见的项目还包括Ambari,一款开源的安装呵呵管理系统;
3.5>.HCatalog,一个元数据管理系统,Hcatalog现已集成到Facebook开源的Hive中。Hortonworks的Stringer开创性的极大的优化了Hive项目。Hortonworks为入门提供了一个非常好的,易于使用的沙盒;
3.6>.Hortonworks开发很多增强特性并提交至核心主干,这使得Apache Hadoop能够在包括Windows Server和Windows Azure在内的Microsoft Windows平台上本地运行。定价以集群为基础,每10个节点每年为12500美元;
官网地址:https://hortonworks.com/products/data-platforms/
下载地址:https://hortonworks.com/downloads/#data-paltform

4>.Hadoop的优势

Hadoop的优势
>.高可靠性
因为Hadoop假设计算元素的和存储会出现故障,因为它维护多个工作数据副本,在出现故障时可以对失败的节点重新分布处理。
>.高扩展性
在集群间分配任务数据,可方便的扩展数以千计的节点。
>.高效性
在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。
>.高容错性
自动保存多个副本数据,并且能够自动将失败的任务重新分配。

5>.Hadoop组成

>.Hadoop概述
1.1>.Hadoop HDFS: 一个高可用,高吞吐量的分布式文件系统,提供数据存储;
1.2>.Hadoop MapReduce:一个分布式的离线并行计算框架;
1.3>.Hadoop YARN:作业调度与集群资源管理的框架,提供资源调度;
1.4>.Hadoop Common:共同模块,支持其他模块的工具模块。 >.HDFS架构概述
2.1>.NameNode(简称nn)
负责存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间,副本数,文件权限),以及每个文件的块列表和块所在的DataNode等等。
2.2>.DataNode(简称dn)
负载在本地文件系统存储文件块数据,以及块数据的校验和。换句话说,它负责存储真实数据。
2.3>.Secondary NameNode(简称2nn)
负责用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照。 >.YARN架构概述
3.1>.ResourceManager(简称rm)
负责处理客户端请求,启动/监控ApplicationMaster,监控NodeManager,资源分配与调度。
3.2>.NodeManager(简称nm)
负责单个节点上的资源管理,处理来自ResourceManager的命令,处理来自ApplicationMaster的命令。
3.3>.ApplicationMaster
负责数据切分,为应用程序申请资源,并分配给内部任务,任务监控与容错。
3.4>.Container
负责对任务运行环境的抽象,封装CPU,内存等多位资源以及环境变量,启动命令等任务运行相关的信息。 >.MapReduce架构概述
MapReduce将计算过程分为两个阶段:即Map和Reduce(当然你在跟源码的时候发现其实在Map和Reduce阶段的前后还有很多细节!后期的文章会详细介绍的)
3.1>.Map阶段并行处理输入数据
3.2>.Reduce阶段对Map结构进行汇总

6>.大数据生态体系

 

Hadoop生态圈-大数据生态体系快速入门篇的更多相关文章

  1. Hadoop优势,组成的相关架构,大数据生态体系下的模式

    Hadoop优势,组成的相关架构,大数据生态体系下的模式 一.Hadoop的优势 二.Hadoop的组成 2.1 HDFS架构 2.2 Yarn架构 2.3 MapReduce架构 三.大数据生态体系 ...

  2. 基于ambari搭建hadoop生态圈大数据组件

    Ambari介绍1Apache Ambari是一种基于Web的工具,支持Apache Hadoop集群的供应.管理和监控.Ambari已支持大多数Hadoop组件,包括HDFS.MapReduce.H ...

  3. 大数据竞赛平台——Kaggle 入门篇

    这篇文章适合那些刚接触Kaggle.想尽快熟悉Kaggle并且独立完成一个竞赛项目的网友,对于已经在Kaggle上参赛过的网友来说,大可不必耗费时间阅读本文.本文分为两部分介绍Kaggle,第一部分简 ...

  4. [大数据之Spark]——快速入门

    本篇文档是介绍如何快速使用spark,首先将会介绍下spark在shell中的交互api,然后展示下如何使用java,scala,python等语言编写应用.可以查看编程指南了解更多的内容. 为了良好 ...

  5. Hadoop系列002-从Hadoop框架讨论大数据生态

    本人微信公众号,欢迎扫码关注! 从Hadoop框架讨论大数据生态 1.Hadoop是什么 1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构 2)主要解决,海量数据的存储和海量数据的 ...

  6. Hadoop生态圈-Hive快速入门篇之HQL的基础语法

    Hadoop生态圈-Hive快速入门篇之HQL的基础语法 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本篇博客的重点是介绍Hive中常见的数据类型,DDL数据定义,DML数据操作 ...

  7. Hadoop生态圈-Hive快速入门篇之Hive环境搭建

    Hadoop生态圈-Hive快速入门篇之Hive环境搭建 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据仓库(理论性知识大多摘自百度百科) 1>.什么是数据仓库 数据 ...

  8. 阿里巴巴飞天大数据架构体系与Hadoop生态系统

    很多人问阿里的飞天大数据平台.云梯2.MaxCompute.实时计算到底是什么,和自建Hadoop平台有什么区别. 先说Hadoop 什么是Hadoop? Hadoop是一个开源.高可靠.可扩展的分布 ...

  9. Hadoop! | 大数据百科 | 数据观 | 中国大数据产业观察_大数据门户

        你正在使用过时的浏览器,Amaze UI 暂不支持. 请 升级浏览器 以获得更好的体验! 深度好文丨读完此文,就知道Hadoop了! 来源:BiThink 时间:2016-04-12 15:1 ...

随机推荐

  1. 20135337——Linux实践三:ELF文件格式(64位系统,简单分析)

    ELF文件格式简单分析 (具体分析见上一篇ELF文件格式32位系统) ELF-header 第一行: 457f 464c :魔数: 0201 :64位系统,小端法 01 :文件头版本 剩余默认0: 第 ...

  2. 在web.xml中配置监听器来控制ioc容器生命周期

    5.整合关键-在web.xml中配置监听器来控制ioc容器生命周期 原因: 1.配置的组件太多,需保障单实例 2.项目停止后,ioc容器也需要关掉,降低对内存资源的占用. 项目启动创建容器,项目停止销 ...

  3. [BUAA2017软工]第1次个人项目 数独

    [BUAA软工]第1次作业 个人项目 数独 一.项目地址 github地址:https://github.com/BuaaAlen/sudoku 二.PSP表格 三.解题思路描述 在拿到这个题目时,我 ...

  4. Navicat连接mysql备份数据库提示:1577 – Cannot proceed because system tables used by Event Scheduler where found damaged at server start

    解决办法,可以参考试试: http://www.cnblogs.com/huangcong/p/3389010.html http://blog.csdn.net/phpfenghuo/article ...

  5. IE下JS保存图片

    function ieSave()                   {                       var img = document.images[0];            ...

  6. Entity Framwork学习笔记

    一.First Demo

  7. 使用kindeditor来替换ecshop的fckeditor编辑器,让ecshop可以批量上传图片

    老杨原创 kindeditor此编辑器可以让ecshop批量上传图片,可以插入代码,可以全屏编辑,可以插入地图.视频,进行更多word操作,设置字体. 步骤一:进入kindeditor的官网,http ...

  8. ESXi内虚拟机带快照与不带快照的情况下简单性能对比.

    1. 两个虚拟机配置相同都为2vCPU 8G内存 一个虚拟机内包含较多的快照且有内容梗概 一个虚拟机不包含快照直接只有一个虚拟机的vmdk磁盘文件 操作系统未windows server 2008r2 ...

  9. 数组 this.setData快捷赋值

    let list=this.data.list; let listString = `{"list[${index}].sliderSure":${!list[index].sli ...

  10. gbk、utf-8、utf8mb4区别

    1. 存储大小(1). GBK编码专门用来解决中文编码的,是双字节的.不论中英文都是双字节的.(2). UTF-8 编码是用以解决国际上字符的一种多字节编码,它对英文使用8位(即一个字节),中文使用2 ...