talk is cheap, show you the code:

/************************************************************************/
/* Name   : OpenCV SVM test                                             */
/* Date   : 2015/11/7                                                   */
/* Author : aban                                                        */
/************************************************************************/
// note : the code is modified from internet. 

#include <iostream>
#include <cmath>
#include <string>
using namespace std;

#include <opencv2/opencv.hpp>
#include <opencv2/ml.hpp>
using namespace cv;

bool plotSupportVectors = true;
int numTrainingPoints = 200;
int numTestPoints = 2000;
int size = 200;
int eq = 0;

// accuracy
float evaluate(cv::Mat& predicted, cv::Mat& actual) {
  assert(predicted.rows == actual.rows);
  int t = 0;
  int f = 0;
  for (int i = 0; i < actual.rows; i++) {
    float p = predicted.at<float>(i, 0);
    float a = actual.at<float>(i, 0);
    if ((p >= 0.0 && a >= 0.0) || (p <= 0.0 &&  a <= 0.0)) {
      t++;
    }
    else {
      f++;
    }
  }
  return (t * 1.0) / (t + f);
}

// plot data and class
void plot_binary(cv::Mat& data, cv::Mat& classes, string name) {
  cv::Mat plot(size, size, CV_8UC3);
  plot.setTo(cv::Scalar(255.0, 255.0, 255.0));
  for (int i = 0; i < data.rows; i++) {

    float x = data.at<float>(i, 0) * size;
    float y = data.at<float>(i, 1) * size;

    if (classes.at<float>(i, 0) > 0) {
      cv::circle(plot, Point(x, y), 2, CV_RGB(255, 0, 0), 1);
    }
    else {
      cv::circle(plot, Point(x, y), 2, CV_RGB(0, 255, 0), 1);
    }
  }
  cv::namedWindow(name, CV_WINDOW_KEEPRATIO);
  cv::imshow(name, plot);
}

// function to learn
int f(float x, float y, int equation) {
  switch (equation) {
  case 0:
    return y > sin(x * 10) ? -1 : 1;
    break;
  case 1:
    return y > cos(x * 10) ? -1 : 1;
    break;
  case 2:
    return y > 2 * x ? -1 : 1;
    break;
  case 3:
    return y > tan(x * 10) ? -1 : 1;
    break;
  default:
    return y > cos(x * 10) ? -1 : 1;
  }
}

// label data with equation
cv::Mat labelData(cv::Mat points, int equation) {
  cv::Mat labels(points.rows, 1, CV_32FC1);
  for (int i = 0; i < points.rows; i++) {
    float x = points.at<float>(i, 0);
    float y = points.at<float>(i, 1);
    labels.at<float>(i, 0) = f(x, y, equation);
  }
  return labels;
}

void svm(cv::Mat& trainingData, cv::Mat& trainingClasses, cv::Mat& testData, cv::Mat& testClasses) {

  Mat traning_label(trainingClasses.rows, 1, CV_32SC1);
  for (int i = 0; i < trainingClasses.rows; i++){
    traning_label.at<int>(i, 0) = trainingClasses.at<float>(i, 0);
  }

  cv::Ptr<cv::ml::SVM> svm = ml::SVM::create();
  svm->setType(ml::SVM::Types::C_SVC);
  svm->setKernel(ml::SVM::KernelTypes::RBF);
  //svm->setDegree(0);  // for poly
  svm->setGamma(20);  // for poly/rbf/sigmoid
  //svm->setCoef0(0);   // for poly/sigmoid
  svm->setC(7);       // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
  //svm->setNu(0);      // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
  //svm->setP(0);       // for CV_SVM_EPS_SVR

  svm->setTermCriteria(TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 1000, 1E-6));

  svm->train(trainingData, ml::SampleTypes::ROW_SAMPLE, traning_label);

  cv::Mat predicted(testClasses.rows, 1, CV_32F);

  svm->predict(testData, predicted);

  cout << "Accuracy_{SVM} = " << evaluate(predicted, testClasses) << endl;
  plot_binary(testData, predicted, "Predictions SVM");

  // plot support vectors
  if (plotSupportVectors) {
    cv::Mat plot_sv(size, size, CV_8UC3);
    plot_sv.setTo(cv::Scalar(255.0, 255.0, 255.0));

    Mat support_vectors = svm->getSupportVectors();
    for (int vecNum = 0; vecNum < support_vectors.rows; vecNum++){
      cv::circle(plot_sv, Point(support_vectors.row(vecNum).at<float>(0)*size, support_vectors.row(vecNum).at<float>(1)*size), 3, CV_RGB(0, 0, 0));
    }

    namedWindow("Support Vectors", CV_WINDOW_KEEPRATIO);
    cv::imshow("Support Vectors", plot_sv);
  }
}

int main(){

  cv::Mat trainingData(numTrainingPoints, 2, CV_32FC1);
  cv::Mat testData(numTestPoints, 2, CV_32FC1);

  cv::randu(trainingData, 0, 1);
  cv::randu(testData, 0, 1);

  cv::Mat trainingClasses = labelData(trainingData, eq);
  cv::Mat testClasses = labelData(testData, eq);

  plot_binary(trainingData, trainingClasses, "Training Data");
  plot_binary(testData, testClasses, "Test Data");

  svm(trainingData, trainingClasses, testData, testClasses);
  waitKey(0);
  return 0;
}

[code segments] OpenCV3.0 SVM with C++ interface的更多相关文章

  1. 【OpenCV】opencv3.0中的SVM训练 mnist 手写字体识别

    前言: SVM(支持向量机)一种训练分类器的学习方法 mnist 是一个手写字体图像数据库,训练样本有60000个,测试样本有10000个 LibSVM 一个常用的SVM框架 OpenCV3.0 中的 ...

  2. Atitit opencv3.0  3.1 3.2 新特性attilax总结

    Atitit opencv3.0  3.1 3.2 新特性attilax总结 1. 3.0OpenCV 3 的改动在哪?1 1.1. 模块构成该看哪些模块?2 2. 3.1新特性 2015-12-21 ...

  3. ubuntu14.04下安装cudnn5.1.3,opencv3.0,编译caffe及配置matlab和python接口过程记录

    已有条件: ubuntu14.04+cuda7.5+anaconda2(即python2.7)+matlabR2014a 上述已经装好了,开始搭建caffe环境. 1. 装cudnn5.1.3,参照: ...

  4. VS2013 Community配置OpenCV3.0.0

    配置环境:32位win7系统+VS2013 Community版本 1.首先从OpenCV官网上下载最新版本的OpenCV for Windows. 2.直接双击打开下载得到的opencv-3.0.0 ...

  5. opencv3.0 在 android 上的使用

    下载 OpenCV-3.0.0-android-sdk-1.zip 打开 intellj,新建立一个 android 工程后选择工程属性,导入模块(Import module from externa ...

  6. Caffe搭建:Ubuntu14.04 + CUDA7.0 + opencv3.0 + Matlab2014A

    从Hinton在science上发表深度学习训练开创新的文章以来,深度学习火了整整有3年多,而且随着新的硬件和算法的提出,深度学习正在应用于越来越多的领域,发挥其算法的优势. 实验室并没有赶上第一波深 ...

  7. opencv3.0中contrib模块的添加+实现SIFT/SURF算法

    平台:win10 x64 +VS 2015专业版 +opencv-3.x.+CMake+Anaconda3(python3.7.0) Issue说明:Opencv3.0版本已经发布了有一段时间,在这段 ...

  8. Windows环境中编译opencv3.0同时加入OPENCV_contrib库及解决遇到相关问题[contrib 必须要3.1以上的opencv才支持了]

    更新:现在contrib库必须要opencv3.1以上才能支持编译通过了. 方法和步骤还是和本篇文章一样. ############################################## ...

  9. OpenCV3 Ref SVM : cv::ml::SVM Class Reference

    OpenCV3  Ref SVM : cv::ml::SVM Class Reference OpenCV2: #include <opencv2/core/core.hpp>#inclu ...

随机推荐

  1. springboot启动报错

    新建springboot整合aop记录web日志的过程中启动失败 错误如下: ***************************APPLICATION FAILED TO START******* ...

  2. jQuery系列 第八章 jQuery框架Ajax模块

    第八章 jQuery框架Ajax模块 8.1 jQuery框架中的Ajax简介 Ajax技术的核心是XMLHTTPRequest对象,该对象是Ajax实现的关键,发送异步请求.接收服务器端的响应以及执 ...

  3. 电力 Web SCADA 工控组态编辑器

    前言 SVG 并非仅仅是一种图像格式, 由于它是一种基于 XML 的语言,也就意味着它继承了 XML 的跨平台性和可扩展性,从而在图形可重用性上迈出了一大步.如 SVG 可以内嵌于其他的 XML 文档 ...

  4. webstorm git团队开发技巧总结(一)

    ---恢复内容开始--- 1.git查看和修改用户名,邮箱 用户名和邮箱地址是本地git客户端的一个变量,不随git库而改变.每次commit都会用用户名和邮箱记录. (1)查看用户名和地址 git ...

  5. pyqt5 动画学习(三) 指定控件的移动轨迹

    这一篇来讲解自定义控件的移动轨迹 原理:我们采用QPainterPath先画一个弧线,然后加载一个物体让物体移动,设置100个关键帧,每个关键帧物体的坐标位置就是弧线的坐标位置,这样就能达到按照指定轨 ...

  6. [COGS 2401]Time is Money

    Description 题库链接 给你 \(n\) 个节点 \(m\) 条边的无向连通图.每条边有两个权值 \(c,t\) ,要你生成一棵边集为 \(\mathbb{E}\) 的生成树使得 \[\su ...

  7. ●BZOJ 4008 [HNOI2015]亚瑟王

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4008题解: 概率dp,神仙题 如果我们可以求出每种牌被取到的概率f,那么最后期望造成的伤害也 ...

  8. 2015 多校联赛 ——HDU5389(dp)

    Sample Input 4 3 9 1 1 2 6 3 9 1 2 3 3 5 2 3 1 1 1 1 1 9 9 9 1 2 3 4 5 6 7 8 9   Sample Output 1 0 1 ...

  9. 【POJ 1459 power network】

    不可以理解的是,测评站上的0ms是怎么搞出来的. 这一题在建立超级源点和超级汇点后就变得温和可爱了.其实它本身就温和可爱.对比了能够找到的题解: (1)艾德蒙·卡普算法(2)迪尼克算法(3)改进版艾德 ...

  10. Orz

    OR: 说实话,感觉Virtual Judge挺好使的,至少到现在,Uva都没注册成功过QAQ,估计是校园网的问题 不得不说现在课越来越多,而且对于我们这种学校ACM才开展两年的来说,时间真的好有限, ...