Description

Little Y finds there is a very interesting formula in mathematics:

XY mod Z = K

Given X, Y, Z, we all know how to figure out K fast. However, given X, Z, K, could you figure out Y fast?

Input

Input data consists of no more than 20 test cases. For each test case, there would be only one line containing 3 integers X, Z, K (0 ≤ X, Z, K ≤ 109).
Input file ends with 3 zeros separated by spaces.

Output

For each test case output one line. Write "No Solution" (without quotes) if you cannot find a feasible Y (0 ≤ Y < Z). Otherwise output the minimum Y you find.

Sample Input

5 58 33
2 4 3
0 0 0

Sample Output

9
No Solution

题解

扩展BSGS:

当模数 $c$ 不是质数的时候,显然不能直接使用 $BSGS$ 了,考虑它的扩展算法。

前提:同余性质。

令 $d = gcd(a, c)$ , $A = a \cdot d,B = b \cdot d, C = c \cdot d$

则 $a \cdot d \equiv b \cdot d \pmod{c \cdot d}$

等价于 $a \equiv b \pmod{c}$

因此我们可以先消除因子。

对于现在的问题 $(A \cdot d)^x \equiv B \cdot d \pmod{C \cdot d}$ 当我们提出 $d = gcd(a, c)$ ($d \neq 1$)后,原式化为 $A \cdot (A \cdot d)^{x-1} \equiv B \pmod{C}$ 。

即求 $D \cdot A^{x-cnt} \equiv B \pmod{C}$ ,令 $x = i \cdot r-j+cnt$ 。之后的做法就和 $BSGS$ 一样了。

值得注意的是因为这样求出来的解 $x \geq cnt$ 的,但有可能存在解 $x < cnt$ ,所以一开始需要特判。

 //It is made by Awson on 2018.1.15
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
using namespace std;
const LL MOD = ;
void read(LL &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(LL x) {
if (x > ) write(x/);
putchar(x%+);
} LL a, b, c, ans;
struct MAP {
LL ha[MOD+]; int id[MOD+];
void clear() {for (int i = ; i < MOD; i++) ha[i] = id[i] = -; }
int count(LL x) {
LL pos = x%MOD;
while (true) {
if (ha[pos] == -) return ;
if (ha[pos] == x) return ;
++pos; if (pos >= MOD) pos -= MOD;
}
}
void insert(LL x, int idex) {
LL pos = x%MOD;
while (true) {
if (ha[pos] == - || ha[pos] == x) {ha[pos] = x, id[pos] = idex; return; }
++pos; if (pos >= MOD) pos -= MOD;
}
}
int query(LL x) {
LL pos = x%MOD;
while (true) {
if (ha[pos] == x) return id[pos];
++pos; if (pos >= MOD) pos -= MOD;
}
}
}mp; LL quick_pow(LL a, LL b, LL c) {
LL ans = ;
while (b) {
if (b&) ans = ans*a%c;
a = a*a%c, b >>= ;
}
return ans;
}
LL gcd(LL a, LL b) {return b ? gcd(b, a%b) : a; }
LL exBSGS(LL a, LL b, LL c) {
if (b == ) return ;
LL cnt = , d = , t;
while ((t = gcd(a, c)) != ) {
if (b%t) return -;
++cnt, b /= t, c /= t, d = d*(a/t)%c;
if (d == b) return cnt;
}
mp.clear();
LL tim = ceil(sqrt(c)), tmp = b%c;
for (int i = ; i <= tim; i++) {
mp.insert(tmp, i); tmp = tmp*a%c;
}
t = tmp = quick_pow(a, tim, c); tmp = (tmp*d)%c;
for (int i = ; i <= tim; i++) {
if (mp.count(tmp)) return tim*i-mp.query(tmp)+cnt;
tmp = tmp*t%c;
}
return -;
}
void work() {
while ((~scanf("%lld%lld%lld", &a, &c, &b))) {
if (c == ) return;
if ((ans = exBSGS(a%c, b%c, c)) == -) printf("No Solution\n");
else write(ans), putchar('\n');
}
}
int main() {
work();
return ;
}

[POJ 3243]Clever Y的更多相关文章

  1. POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)

    不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...

  2. POJ 3243 Clever Y 扩展BSGS

    http://poj.org/problem?id=3243 这道题的输入数据输入后需要将a和b都%p https://blog.csdn.net/zzkksunboy/article/details ...

  3. poj 3243 Clever Y && 1467: Pku3243 clever Y【扩展BSGS】

    扩展BSGS的板子 对于gcd(a,p)>1的情况 即扩展BSGS 把式子变成等式的形式: \( a^x+yp=b \) 设 \( g=gcd(a,p) \) 那么两边同时除以g就会变成: \( ...

  4. POJ 3243 Clever Y(离散对数-拓展小步大步算法)

    Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, ...

  5. poj 3243 Clever Y 高次方程

    1 Accepted 8508K 579MS C++ 2237B/** hash的强大,,还是高次方程,不过要求n不一定是素数 **/ #include <iostream> #inclu ...

  6. POJ 3243 Clever Y | BSGS算法完全版

    题目: 给你A,B,K 求最小的x满足Ax=B (mod K) 题解: 如果A,C互质请参考上一篇博客 将 Ax≡B(mod C) 看作是Ax+Cy=B方便叙述与处理. 我们将方程一直除去A,C的最大 ...

  7. POJ 3243 Clever Y Extended-Baby-Step-Giant-Step

    题目大意:给定A,B,C,求最小的非负整数x,使A^x==B(%C) 传说中的EXBSGS算法0.0 卡了一天没看懂 最后硬扒各大神犇的代码才略微弄懂点0.0 參考资料: http://quarter ...

  8. 【POJ】3243 Clever Y

    http://poj.org/problem?id=3243 题意:求$a^y \equiv b \pmod{p}$最小的$y$.(0<=x, y, p<=10^9) #include & ...

  9. BZOJ 3243 Clever Y

    Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, ...

随机推荐

  1. [福大软工] W班 软工实践原型设计—成绩公布

    作业地址 https://edu.cnblogs.com/campus/fzu/FZUSoftwareEngineering1715W/homework/909 作业要求 详见作业地址 存在问题 1. ...

  2. 第二次作业之微信小程序

    2.1 介绍产品相关信息 你选择的产品是? 微信小程序 为什么选择该产品作为分析? 在等待了1年多以后,小程序终于在今年初上线,即速应用在H5领域的累计,便承接在小程序上.8月7日,即速应用的用户微信 ...

  3. C语言博客作业—函数嵌套调用

    一.实验作业 1.1 PTA题目:递归法对任意10个数据按降序排序 1.1.1设计思路 void sort(int a[],int n) { 定义整型循环变量i,中间变量temp,最小值min: 令m ...

  4. 201621123062《java程序设计》第五周作业总结

    1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 关键词:interface.Comparable.comparator 1.2 尝试使用思维导图将这些关键词组织起来.注:思维导 ...

  5. bzoj千题计划243:bzoj2325: [ZJOI2011]道馆之战

    http://www.lydsy.com/JudgeOnline/problem.php?id=2325 设线段树节点区间为[l,r] 每个节点维护sum[0/1][0/1]  从l的A/B区域到r的 ...

  6. MyBatis 中使用数据库查询别名进行映射

    方法1 XXMapper.xml <mapper namespace="com.hfepc.dao.andon.AndonExceptionKanbanVOMapper" & ...

  7. php中(包括织梦cms)set_time_limit(0)不起作用的解决方法

    背景介绍: 在做织梦冗余图片清理的功能时, 由于冗余图片太多,导致每次清理时都会超时, 后来在网上搜索了各种文章,网上有如下的解决方法: set_time_limit(0) ini_set('max_ ...

  8. 消除ExtJS6的extjs-trila字样

  9. CSS你所不知的伪元素的用法

    你所不知的 CSS ::before 和 ::after 伪元素用法 博客分类: Div / Css / XML / HTML5   CSS 有两个说不上常用的伪类 :before 和 :after, ...

  10. $.ajax 提交数据到后台.

    //AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML -- (Extensible Markup Language 可扩展标记语言 ...