Given a matrix consists of 0 and 1, find the distance of the nearest 0 for each cell.

The distance between two adjacent cells is 1.

Example 1: 
Input:

0 0 0
0 1 0
0 0 0

Output:

0 0 0
0 1 0
0 0 0

Example 2: 
Input:

0 0 0
0 1 0
1 1 1

Output:

0 0 0
0 1 0
1 2 1

Note:

  1. The number of elements of the given matrix will not exceed 10,000.
  2. There are at least one 0 in the given matrix.
  3. The cells are adjacent in only four directions: up, down, left and right.

这道题给了我们一个只有0和1的矩阵,让我们求每一个1到离其最近的0的距离,其实也就是求一个距离场,而求距离场那么BFS将是不二之选。刚看到此题时,我以为这跟之前那道 Shortest Distance from All Buildings 是一样的,从每一个0开始遍历,不停的更新每一个1的距离,但是这样写下来TLE了。后来我又改变思路,从每一个1开始BFS,找到最近的0,结果还是TLE,气死人。后来逛论坛发现思路是对的,就是写法上可以进一步优化,我们可以首先遍历一次矩阵,将值为0的点都存入queue,将值为1的点改为INT_MAX。之前像什么遍历迷宫啊,起点只有一个,而这道题所有为0的点都是起点,这想法,叼!然后开始BFS遍历,从queue中取出一个数字,遍历其周围四个点,如果越界或者周围点的值小于等于当前值加1,则直接跳过。因为周围点的距离更小的话,就没有更新的必要,否则将周围点的值更新为当前值加1,然后把周围点的坐标加入queue,参见代码如下:

解法一:

class Solution {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[].size();
vector<vector<int>> dirs{{,-},{-,},{,},{,}};
queue<pair<int, int>> q;
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
if (matrix[i][j] == ) q.push({i, j});
else matrix[i][j] = INT_MAX;
}
}
while (!q.empty()) {
auto t = q.front(); q.pop();
for (auto dir : dirs) {
int x = t.first + dir[], y = t.second + dir[];
if (x < || x >= m || y < || y >= n || matrix[x][y] <= matrix[t.first][t.second] + ) continue;
matrix[x][y] = matrix[t.first][t.second] + ;
q.push({x, y});
}
}
return matrix;
}
};

下面这种解法是参考的qswawrq大神的帖子,他想出了一种二次扫描的解法,从而不用使用BFS了。这种解法也相当的巧妙,我们首先建立一个和matrix大小相等的矩阵res,初始化为很大的值,这里我们用INT_MAX-1,为甚么要减1呢,后面再说。然后我们遍历matrix矩阵,当遇到为0的位置,我们将结果res矩阵的对应位置也设为0,这make sense吧,就不多说了。然后就是这个解法的精髓了,如果不是0的地方,我们在第一次扫描的时候,比较其左边和上边的位置,取其中较小的值,再加上1,来更新结果res中的对应位置。这里就明白了为啥我们要初始化为INT_MAX-1了吧,因为这里要加1,如果初始化为INT_MAX就会整型溢出,不过放心,由于是取较小值,res[i][j]永远不会取到INT_MAX,所以不会有再加1溢出的风险。第一次遍历我们比较了左和上的方向,那么我们第二次遍历就要比较右和下的方向,注意两种情况下我们不需要比较,一种是当值为0时,还有一种是当值为1时,这两种情况下值都不可能再变小了,所以没有更新的必要,参见代码如下:

解法二:

class Solution {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[].size();
vector<vector<int>> res(m, vector<int>(n, INT_MAX - ));
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
if (matrix[i][j] == ) res[i][j] = ;
else {
if (i > ) res[i][j] = min(res[i][j], res[i - ][j] + );
if (j > ) res[i][j] = min(res[i][j], res[i][j - ] + );
}
}
}
for (int i = m - ; i >= ; --i) {
for (int j = n - ; j >= ; --j) {
if (res[i][j] != && res[i][j] != ) {
if (i < m - ) res[i][j] = min(res[i][j], res[i + ][j] + );
if (j < n - ) res[i][j] = min(res[i][j], res[i][j + ] + );
}
}
}
return res;
}
};

史蒂芬大神的帖子中,他提出了一种变型的方法,没有再区分左上右下,而是每次都跟左边相比,但是需要每次把矩阵旋转90度。他用python写的解法异常的简洁,貌似python中可以一行代码进行矩阵旋转,但是貌似C++没有这么叼,矩阵旋转写起来还是需要两个for循环,写出来估计也不短,这里就不写了,有兴趣的童鞋可以自己试试写一下,可以贴到留言板上哈~

参考资料:

https://leetcode.com/problems/01-matrix/

https://leetcode.com/problems/01-matrix/discuss/101021/java-solution-bfs

https://leetcode.com/problems/01-matrix/discuss/101039/java-33ms-solution-with-two-sweeps-in-on

https://leetcode.com/problems/01-matrix/discuss/101023/18-line-c-dp-solution-on-easy-to-understand

https://leetcode.com/problems/01-matrix/discuss/101102/short-solution-each-path-needs-at-most-one-turn

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 01 Matrix 零一矩阵的更多相关文章

  1. [Leetcode] 01 Matrix

    问题: https://leetcode.com/problems/01-matrix/#/description 基本思路:广度优先遍历,根据所有最短距离为N的格找到所有距离为N+1的格,直到所有的 ...

  2. [LeetCode] Spiral Matrix II 螺旋矩阵之二

    Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. For ...

  3. [Leetcode] spiral matrix ii 螺旋矩阵

    Given an integer n, generate a square matrix filled with elements from 1 to n 2 in spiral order. For ...

  4. [LeetCode] 01 Matrix 题解

    题意 # 思路 我一开始的时候想的是嘴 # 实现 ```cpp // // include "../PreLoad.h" class Solution { public: /** ...

  5. leetcode[73] Set Matrix Zeroes 将矩阵置零

    给定一个矩阵,把零值所在的行和列都置为零.例如: 1 2 3 1 3 1 1 1 操作之后变为 1 3 0 0 0 1 1 方法1: 赋值另存一个m*n的矩阵,在原矩阵为零的值相应置新的矩阵行和列为零 ...

  6. [Leetcode Week10]01 Matrix

    01 Matrix 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/01-matrix/description/ Description Given a ...

  7. LeetCode 562. Longest Line of Consecutive One in Matrix(在矩阵中最长的连续1)$

    Given a 01 matrix M, find the longest line of consecutive one in the matrix. The line could be horiz ...

  8. [leetcode] 542. 01 Matrix (Medium)

    给予一个矩阵,矩阵有1有0,计算每一个1到0需要走几步,只能走上下左右. 解法一: 利用dp,从左上角遍历一遍,再从右下角遍历一遍,dp存储当前位置到0的最短距离. 十分粗心的搞错了col和row,改 ...

  9. leetcode 542. 01 Matrix 、663. Walls and Gates(lintcode) 、773. Sliding Puzzle 、803. Shortest Distance from All Buildings

    542. 01 Matrix https://www.cnblogs.com/grandyang/p/6602288.html 将所有的1置为INT_MAX,然后用所有的0去更新原本位置为1的值. 最 ...

随机推荐

  1. php的错误日志级别 error_report(转)

    ; E_ALL 所有错误和警告(除E_STRICT外); E_ERROR 致命的错误.脚本的执行被暂停.; E_RECOVERABLE_ERROR 大多数的致命错误.; E_WARNING 非致命的运 ...

  2. canvas填充样式

    填充样式主要针对fillStyle.fillStyle除了可以赋值为color,还可以赋值渐变色,包括线性渐变色和径向渐变色,还是和css3里的内容类似. 一.线性渐变 1.设置线性渐变的填充样式 设 ...

  3. SQLite学习手册(数据表和视图)

    如何列出SQLite数据库中的所有表 SQLite数据库中的信息存在于一个内置表sqlite_master中,在查询器中可以用 select * from sqlite_master 来查看,如果只要 ...

  4. SSH三大框架的整合

    SSH三个框架的知识点 一.Hibernate框架 1. Hibernate的核心配置文件 1.1 数据库信息.连接池配置 1.2 Hibernate信息 1.3 映射配置 1.4 Hibernate ...

  5. Redux----Regular的Redux实现整理

      Regular的Redux实现整理 什么问题? 组件的树形结构决定了数据的流向,导致的数据传递黑洞 怎么解决? 所有组件都通过中介者传递共享数据 方案: 中介者: (function create ...

  6. 构造函数与析构函数(construction undergoing)

    构造函数和析构函数 一.构造函数: 1.普通构造函数:在对象被创建时利用特定的值构造对象,将对象初始化到一个特定的状态. 特性:构造函数的函数名和类名相同:没有返回值:在对象被创建时被自动调用:如果有 ...

  7. css代码整理

    width:(宽度) height:(高度) border:1px solid red:(边框 :边框粗细 显示 颜色) border-radius:10deg:(边框变圆角) box-shadow: ...

  8. 201621123040《Java程序设计》第13周学习总结

    1.本周学习总结 2.为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 2.1简述你想为你的系统增加什么网络功能?设计思路是什么? 创建服务器端端口(3333),当用户以客户端身份访问 ...

  9. 201621123057 《Java程序设计》第6周学习总结

    1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰 ...

  10. Papers3

    Papers3 总览 Papers功能主要是文献收集,整理,阅读和引用. 主页面: 文献收集 Papers提供两种导入文献的方法:在线搜索和本地导入: 在线搜索 可以通过搜索题目,作者,摘要等内容中的 ...