Given an array A (index starts at 1) consisting of N integers: A1, A2, ..., AN and an integer B. The integer Bdenotes that from any place (suppose the index is i) in the array A, you can jump to any one of the place in the array A indexed i+1i+2, …, i+B if this place can be jumped to. Also, if you step on the index i, you have to pay Ai coins. If Ai is -1, it means you can’t jump to the place indexed i in the array.

Now, you start from the place indexed 1 in the array A, and your aim is to reach the place indexed N using the minimum coins. You need to return the path of indexes (starting from 1 to N) in the array you should take to get to the place indexed N using minimum coins.

If there are multiple paths with the same cost, return the lexicographically smallest such path.

If it's not possible to reach the place indexed N then you need to return an empty array.

Example 1:

Input: [1,2,4,-1,2], 2
Output: [1,3,5]

Example 2:

Input: [1,2,4,-1,2], 1
Output: []

Note:

  1. Path Pa1, Pa2, ..., Pan is lexicographically smaller than Pb1, Pb2, ..., Pbm, if and only if at the first i where Pai and Pbi differ, Pai < Pbi; when no such i exists, then n < m.
  2. A1 >= 0. A2, ..., AN (if exist) will in the range of [-1, 100].
  3. Length of A is in the range of [1, 1000].
  4. B is in the range of [1, 100].

这道题给了我们一个数组A,又给了我们一个整数B,表示能走的最大步数,数组上的每个数字都是cost值,如果到达某个位置,就要加上该位置上的数字,其实位置是在第一个数字上,目标是到达末尾位置,我们需要让总cost值最小,并输入路径,如果cos相同的话,输出字母顺序小的那个路径。还有就是如果数组上的某个位置为-1的话,表示到达该位置后不能再去下一个位置,而且数组末位置不能为-1。博主最开始写了一个递归的解法,结果MLE了,看来这道题对内存使用的管控极为苛刻。所以我们不能将所有的候选路径都存在内存中,而是应该建立祖先数组,即数组上每个位置放其父结点的位置,有点像联合查找Union Find中的root数组,再最后根据这个祖先数组来找出正确的路径。由于需要找出cost最小的路径,所以我们可以考虑用dp数组,其中dp[i]表示从开头到位置i的最小cost值,但是如果我们从后往前跳,那么dp[i]就是从末尾到位置i的最小cost值。

我们首先判断数组A的末尾数字是否为-1,是的话直接返回空集。否则就新建结果res数组,dp数组,和pos数组,其中dp数组都初始化为整型最大值,pos数组都初始化为-1。然后将dp数组的最后一个数字赋值为数组A的尾元素。因为我们要从后往前跳,那我们从后往前遍历,如果遇到数字-1,说明不能往前跳了,直接continue继续循环,然后对于每个遍历到的数字,我们都要遍历其上一步可能的位置的dp[j]值来更新当前dp[i]值,由于限制了步数B,所以最多能到i+B,为了防止越界,要取i+B和n-1中的较小值为界限,如果上一步dp[j]值为INT_MAX,说明上一个位置无法跳过来,直接continue,否则看上一个位置dp[j]值加上当前cost值A[i],如果小于dp[i],说明dp[i]需要更新,并且建立祖先数组的映射pos[i] = j。最后在循环结束后,我们判断dp[0]的值,如果是INT_MAX,说明没有跳到首位置,直接返回空集,否则我们就通过pos数组来取路径。我们从前往后遍历pos数组来取位置,直到遇到-1停止。另外要说明的就是,这种从后往前遍历的模式得到的路径一定是字母顺序最小的,zestypanda大神的帖子中有证明,不过博主没太看懂-.-|||,可以带这个例子尝试:

A = [0, 0, 0], B = 2

上面这个例子得到的结果是[1, 2, 3],是字母顺序最小的路径,而相同的cost路径[1, 3],就不是字母顺序最小的路径,参见代码如下:

解法一:

class Solution {
public:
vector<int> cheapestJump(vector<int>& A, int B) {
if (A.back() == -) return {};
int n = A.size();
vector<int> res, dp(n, INT_MAX), pos(n, -);
dp[n - ] = A[n - ];
for (int i = n - ; i >= ; --i) {
if (A[i] == -) continue;
for (int j = i + ; j <= min(i + B, n - ); ++j) {
if (dp[j] == INT_MAX) continue;
if (A[i] + dp[j] < dp[i]) {
dp[i] = A[i] + dp[j];
pos[i] = j;
}
}
}
if (dp[] == INT_MAX) return res;
for (int cur = ; cur != -; cur = pos[cur]) {
res.push_back(cur + );
}
return res;
}
};

下面这种方法是正向遍历的解法,正向跳的话就需要另一个数组len,len[i]表示从开头到达位置i的路径的长度,如果两个路径的cost相同,那么一定是路径长度大的字母顺序小,可以参见例子 A = [0, 0, 0], B = 2。

具体的写法就不讲了,跟上面十分类似,参考上面的讲解,需要注意的就是更新的判定条件中多了一个t == dp[i] && len[i] < len[j] + 1,就是判断当cost相同时,我们取长度大路径当作结果保存。还有就是最后查找路径时要从末尾往前遍历,只要遇到-1时停止,参见代码如下:

解法二:

class Solution {
public:
vector<int> cheapestJump(vector<int>& A, int B) {
if (A.back() == -) return {};
int n = A.size();
vector<int> res, dp(n, INT_MAX), pos(n, -), len(n, );
dp[] = ;
for (int i = ; i < n; ++i) {
if (A[i] == -) continue;
for (int j = max(, i - B); j < i; ++j) {
if (dp[j] == INT_MAX) continue;
int t = A[i] + dp[j];
if (t < dp[i] || (t == dp[i] && len[i] < len[j] + )) {
dp[i] = t;
pos[i] = j;
len[i] = len[j] + ;
}
}
}
if (dp[n - ] == INT_MAX) return res;
for (int cur = n - ; cur != -; cur = pos[cur]) {
res.insert(res.begin(), cur + );
}
return res;
}
};

类似题目:

House Robber II

House Robber

Frog Jump

Jump Game

Jump Game II

参考资料:

https://discuss.leetcode.com/topic/98399/c-dp-o-nb-time-o-n-space

https://discuss.leetcode.com/topic/98491/java-22-lines-solution-with-proof

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Coin Path 硬币路径的更多相关文章

  1. [LeetCode] 656. Coin Path 硬币路径

    Given an array A (index starts at 1) consisting of N integers: A1, A2, ..., AN and an integer B. The ...

  2. [LeetCode] 112. Path Sum 路径和

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

  3. [LeetCode] Coin Change 硬币找零

    You are given coins of different denominations and a total amount of money amount. Write a function ...

  4. [LeetCode] Simplify Path 简化路径

    Given an absolute path for a file (Unix-style), simplify it. For example,path = "/home/", ...

  5. [leetcode]112. Path Sum路径和(是否有路径)

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

  6. 【LeetCode】Path Sum(路径总和)

    这道题是LeetCode里的第112道题.是我在学数据结构——二叉树的时候碰见的题.题目要求: 给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和 ...

  7. LeetCode 112. Path Sum路径总和 (C++)

    题目: Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up ...

  8. [LeetCode] 113. Path Sum II 路径和 II

    Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given su ...

  9. [LeetCode] 437. Path Sum III 路径和 III

    You are given a binary tree in which each node contains an integer value. Find the number of paths t ...

随机推荐

  1. Beta 第四天

    今天遇到的困难: 百度位置假死的问题研究发现并不是源于代码的问题,而是直接运行在主线程中会出现诸多问题 Fragment碎片刷新时总产生的固定位置的问题未果 今天完成的任务: 陈甘霖:修复了部分Bug ...

  2. 201621123040《Java程序设计》第3周学习总结

    1.本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词,如类.对象.封装等 面向对象的思想 对象 类 1.2 用思维导图或者Onenote或其他工具将这些关键词组织起来. 掌握的还不够深 ...

  3. 201621123040 《Java程序设计》第1周学习总结

    1.本周学习总结 关键词 JAVA概述 HelloWorld JDK JRE JVM JAVA基础语法 相关联系 通过一周的学习,我对JAVA有了初步的了解,JAVA是一种优秀的跨平台编写代码的应用平 ...

  4. 开始 Python 之旅

    开始 Python 之旅 课程来源 本课程基于 Python for you and me 教程翻译制作,其中参考了 Python tutorial 和 The Python Standard Lib ...

  5. Struts2之配置文件中Action的详细配置

    在Struts2之配置一文中,我们知道一个struts配置文件可以分为三部分:常量配置    包含其他配置文件的配置    Action配置  . 这其中 常量配置  和 包含其他配置文件的配置  二 ...

  6. shell中冒号 : 用途说明

    我们知道,在Linux系统中,冒号(:)常用来做路径的分隔符(PATH),数据字段的分隔符(/etc/passwd)等.其实,冒号(:)在Bash中也是一个内建命令,它啥也不做,是个空命令.只起到占一 ...

  7. Java并发编程实战 之 线程安全性

    1.什么是线程安全性 当多个线程访问某个类时,不管运行时环境采用何种调用方式或者这些线程将如何交替执行,并且在主调代码中不需要任何额外的同步或协同,这个类都能表现出正确的行为,那么就称这个类是线程安全 ...

  8. D的下L

    D的小L 时间限制:4000 ms  |  内存限制:65535 KB 难度:2   描述       一天TC的匡匡找ACM的小L玩三国杀,但是这会小L忙着哩,不想和匡匡玩但又怕匡匡生气,这时小L给 ...

  9. prop attr 到底哪里不一样?

    好吧 首先承认错误  说好的每天进行一次只是总结  但是我没坚持住 准确的来说 我并没有每天会学到了东西 但是 我一直在持续努力着  以后应该不会每天都写  但是自己觉得有用的  或者想加强记忆的 可 ...

  10. php的api及登录的权限验证

    类,库,接口(APi),函数,这些概念都是根据问题规模的大小来界定的.一个很小的问题肯定没有必要写成一个库,只需要写几句话就行了. 但是比如一个登录验证,这个功能很强大,很通用,可能前台后台都需要用到 ...