【NOIP2009】Hankson 的趣味题
题目描述
Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson。现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。
今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数。现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数 x 满足:
1. x 和 a0 的最大公约数是 a1;
2. x 和 b0 的最小公倍数是 b1。
Hankson 的“逆问题”就是求出满足条件的正整数 x。但稍加思索之后,他发现这样的x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的 x 的个数。请你帮助他编程求解这个问题。
解题报告:
写着好玩,好像和网上题解有些不一样
这题可以从c和d下手,考虑c和d的质因子,如果d的某个质因子和c的某个质因子的出现次数相同,那么x就可以取任意个(不超过d)该质因子。
如果c的质因子和d的质因子出现的不相同,那么x含有该因子的次数就确定了,可以直接乘起来。
最后我们把不确定的质因子dfs枚举出现次数,然后暴力判断 \(gcd(x,a0)==a1\) 即可
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=45005;
int a,b,c,d,pri[N],num=0,n=0;bool vis[N];
int li=1;
void getpri(){
for(int i=2;i<N;i++){
if(!vis[i])pri[++num]=i;
for(int j=1;j<=num && pri[j]*i<N;j++){
vis[pri[j]*i]=true;if(i%pri[j]==0)break;
}
}
}
struct node{
int x,t;
}q[N];
int qm(int x,int k){
int sum=1;
while(k){if(k&1)sum*=x;x*=x;k>>=1;}
return sum;
}
bool check(int y,int goal){
int x=c,cnt=0;
while(x%y==0)x/=y,cnt++;
return cnt!=goal;
}
int ans=0;
int gcd(int x,int y){return x%y?gcd(y,x%y):y;}
void dfs(int dep,int cnt,int tot){
if(dep==n+1){
if(gcd(tot,a)==b)ans++;
return ;
}
if(cnt<q[dep].t)dfs(dep,cnt+1,tot*q[dep].x);
dfs(dep+1,0,tot);
}
void work()
{
int cnt=0,x;n=0;ans=0;li=1;
scanf("%d%d%d%d",&a,&b,&c,&d);x=d;
for(int j=1;j<=num && pri[j]<=x;j++){
cnt=0;
while(x%pri[j]==0)x/=pri[j],cnt++;
if(check(pri[j],cnt))li*=qm(pri[j],cnt);
else q[++n].x=pri[j],q[n].t=cnt;
}
if(x>1){
if(check(x,1))li*=x;
else q[++n].x=x,q[n].t=1;
}
dfs(1,0,li);
printf("%d\n",ans);
}
int main()
{
int T;cin>>T;getpri();
while(T--)work();
return 0;
}
【NOIP2009】Hankson 的趣味题的更多相关文章
- 洛谷P1072 [NOIP2009] Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- NOIP2009 Hankson 的趣味题 : 数论
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解 ...
- NOIP2009 Hankson的趣味题
题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在 ...
- [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)
题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...
- [NOIp2009] $Hankson$ 的趣味题
类型:数论 传送门:>Here< 题意:给出四个数$a_0,a_1,b_0,b_1$,求满足$gcd(x,a_0)=a_1,lcm(x,b_0)=b_1$的$x$的个数 解题思路 显然$a ...
- luogu1072 [NOIp2009]Hankson的趣味题 (数学+STL::set)
一个JSB做法 由$\frac{x*b0}{gcd(x,b0)}=b1$,可得$\frac{x}{gcd(x,b0)}=\frac{b1}{b0}$ 设$b2=\frac{b1}{b0}$ 所以对$b ...
- NOIP 2009 Hankson 的趣味题
洛谷 P1072 Hankson 的趣味题 洛谷传送门 JDOJ 1648: [NOIP2009]Hankson的趣味题 T2 JDOJ传送门 Description Hanks 博士是BT (Bio ...
- 「NOIP2009」Hankson 的趣味题
Hankson 的趣味题 [内存限制:$128 MiB$][时间限制:$1000 ms$] [标准输入输出][题目类型:传统][评测方式:文本比较] 题目描述 Hanks 博士是 BT(Bio-Tec ...
- CH3201 Hankson的趣味题
题意 3201 Hankson的趣味题 0x30「数学知识」例题 描述 Hanks博士是BT(Bio-Tech,生物技术)领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson ...
- 算法训练 Hankson的趣味题
算法训练 Hankson的趣味题 时间限制:1.0s 内存限制:64.0MB 问题描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Han ...
随机推荐
- 读论文系列:Object Detection CVPR2016 YOLO
CVPR2016: You Only Look Once:Unified, Real-Time Object Detection 转载请注明作者:梦里茶 YOLO,You Only Look Once ...
- 记录python接口自动化测试--利用unittest生成测试报告(第四目)
前面介绍了是用unittest管理测试用例,这次看看如何生成html格式的测试报告 生成html格式的测试报告需要用到 HTMLTestRunner,在网上下载了一个HTMLTestRunner.py ...
- Beta冲刺 第七天
Beta冲刺 第七天 昨天的困难 昨天的困难在一些多表查询上,不熟悉hibernate的套路,走了很多弯路. 第一次使用图表插件,在图表的显示问题上花了一定的时间. 对于页面绑定和后台数据自动填充的理 ...
- Beat冲刺报告---Day0
Beta阶段报告---Day0 1.需要改进完善的功能 我们上一阶段开发由于开发时间匆忙,对于爬虫耗时的优化没有考虑.优化的空间我在Alpha阶段的总结报告里说过,具体看下图. 这张图显示出爱 ...
- vue2.X简单翻页/分页
由于业务需要 公司把后台所有数据一次性给前端,数据过多,所以前端需要做一些分页的处理,比较简单的翻页. html代码 <table class="three_td"> ...
- nyoj 非洲小孩
非洲小孩 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 家住非洲的小孩,都很黑.为什么呢?第一,他们地处热带,太阳辐射严重.第二,他们不经常洗澡.(常年缺水,怎么洗 ...
- JAVA_SE基础——70.Math类
package cn.itcast.other; /* Math 数学类, 主要是提供了很多的数学公式. abs(double a) 获取绝对值 ceil(double a) 向上取整 ...
- JAVA_SE基础——30.构造代码块
黑马程序员入学blog...构造代码块作用:给所有的对象进行统一的初始化. 问题:要求每个小孩出生都会哭,这份代码有两个构造函数,如果需要每个小孩出生都要哭的话,那么就需要在不同的构造函数中都调用cr ...
- python time、datetime、random、os、sys模块
一.模块1.定义模块:用来从逻辑上组织Python代码(变量,函数,类,逻辑:实现一个功能),本质就是.py结尾的python文件(文件名:test.py,对应的模块名:test)包:用来从逻辑上组织 ...
- 释义Oracle 11r2中并行执行相关参数
因最近对现场某些服务器进行诊断和调整,用到了这类参数,因此对这类参数做了详尽的查阅和研究,现将该类参数释义如下,以方便同行和自己参考,禁止转载: 1.PARALLEL_ADAPTIVE_MULTI_U ...