题目描述

Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson。现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。

今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数。现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数 x 满足:

1. x 和 a0 的最大公约数是 a1;

2. x 和 b0 的最小公倍数是 b1。

Hankson 的“逆问题”就是求出满足条件的正整数 x。但稍加思索之后,他发现这样的x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的 x 的个数。请你帮助他编程求解这个问题。

解题报告:

写着好玩,好像和网上题解有些不一样

这题可以从c和d下手,考虑c和d的质因子,如果d的某个质因子和c的某个质因子的出现次数相同,那么x就可以取任意个(不超过d)该质因子。

如果c的质因子和d的质因子出现的不相同,那么x含有该因子的次数就确定了,可以直接乘起来。

最后我们把不确定的质因子dfs枚举出现次数,然后暴力判断 \(gcd(x,a0)==a1\) 即可

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=45005;
int a,b,c,d,pri[N],num=0,n=0;bool vis[N];
int li=1;
void getpri(){
for(int i=2;i<N;i++){
if(!vis[i])pri[++num]=i;
for(int j=1;j<=num && pri[j]*i<N;j++){
vis[pri[j]*i]=true;if(i%pri[j]==0)break;
}
}
}
struct node{
int x,t;
}q[N];
int qm(int x,int k){
int sum=1;
while(k){if(k&1)sum*=x;x*=x;k>>=1;}
return sum;
}
bool check(int y,int goal){
int x=c,cnt=0;
while(x%y==0)x/=y,cnt++;
return cnt!=goal;
}
int ans=0;
int gcd(int x,int y){return x%y?gcd(y,x%y):y;}
void dfs(int dep,int cnt,int tot){
if(dep==n+1){
if(gcd(tot,a)==b)ans++;
return ;
}
if(cnt<q[dep].t)dfs(dep,cnt+1,tot*q[dep].x);
dfs(dep+1,0,tot);
}
void work()
{
int cnt=0,x;n=0;ans=0;li=1;
scanf("%d%d%d%d",&a,&b,&c,&d);x=d;
for(int j=1;j<=num && pri[j]<=x;j++){
cnt=0;
while(x%pri[j]==0)x/=pri[j],cnt++;
if(check(pri[j],cnt))li*=qm(pri[j],cnt);
else q[++n].x=pri[j],q[n].t=cnt;
}
if(x>1){
if(check(x,1))li*=x;
else q[++n].x=x,q[n].t=1;
}
dfs(1,0,li);
printf("%d\n",ans);
} int main()
{
int T;cin>>T;getpri();
while(T--)work();
return 0;
}

【NOIP2009】Hankson 的趣味题的更多相关文章

  1. 洛谷P1072 [NOIP2009] Hankson 的趣味题

    P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...

  2. NOIP2009 Hankson 的趣味题 : 数论

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解 ...

  3. NOIP2009 Hankson的趣味题

    题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在 ...

  4. [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)

    题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...

  5. [NOIp2009] $Hankson$ 的趣味题

    类型:数论 传送门:>Here< 题意:给出四个数$a_0,a_1,b_0,b_1$,求满足$gcd(x,a_0)=a_1,lcm(x,b_0)=b_1$的$x$的个数 解题思路 显然$a ...

  6. luogu1072 [NOIp2009]Hankson的趣味题 (数学+STL::set)

    一个JSB做法 由$\frac{x*b0}{gcd(x,b0)}=b1$,可得$\frac{x}{gcd(x,b0)}=\frac{b1}{b0}$ 设$b2=\frac{b1}{b0}$ 所以对$b ...

  7. NOIP 2009 Hankson 的趣味题

    洛谷 P1072 Hankson 的趣味题 洛谷传送门 JDOJ 1648: [NOIP2009]Hankson的趣味题 T2 JDOJ传送门 Description Hanks 博士是BT (Bio ...

  8. 「NOIP2009」Hankson 的趣味题

    Hankson 的趣味题 [内存限制:$128 MiB$][时间限制:$1000 ms$] [标准输入输出][题目类型:传统][评测方式:文本比较] 题目描述 Hanks 博士是 BT(Bio-Tec ...

  9. CH3201 Hankson的趣味题

    题意 3201 Hankson的趣味题 0x30「数学知识」例题 描述 Hanks博士是BT(Bio-Tech,生物技术)领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson ...

  10. 算法训练 Hankson的趣味题

    算法训练 Hankson的趣味题   时间限制:1.0s   内存限制:64.0MB        问题描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Han ...

随机推荐

  1. 四则运算----C++版

    一.设计思想 因java中已做过,就是简单的将java中的语句调换为C++的语句. 二.代码 #include<iostream.h> #include<Stdlib.h> v ...

  2. win7下,使用django运行django-admin.py无法创建网站

    安装django的步骤: 1.安装python,选择默认安装在c盘即可.设置环境变量path,值添加python的安装路径. 2.下载ez_setup.py,下载地址:http://peak.tele ...

  3. AWS EMR上搭建HBase环境

    0. 概述 AWS的EMR服务为客户提供的托管 Hadoop 框架可以让您轻松.快 速.经济高效地在多个动态可扩展的 Amazon EC2 实例之间分发和处理 大量数据.您还可以运行其他常用的分发框架 ...

  4. 201421123042 《Java程序设计》第8周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 源代码: 答:查找 ...

  5. Hibernate之缓存

    Hibernate为了解决频繁查询数据的效率问题,提供了三种级别的缓存 1.一级缓存 一级缓存 又叫 session缓存 .Session对象会缓存处于持久化状态的每个对象 ,如果下次想用数据表中同一 ...

  6. 剑指offer-数据流中的中位数

    题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值.   ...

  7. 新概念英语(1-21)Whick book

    Which book does the man want? A:Give me a book, please, Jane? B:Whick book? this one ? A:No, not tha ...

  8. python入门(7)Python程序的风格

    python入门(7)Python程序的风格 Python采用缩进方式,写出来的代码就像下面的样子: # print absolute value of an integer: a = 100 if ...

  9. apigw鉴权分析(1-3)百度 AI - 鉴权方式分析

    http://ai.baidu.com/docs#/Begin/top 一.访问入口 二.鉴权方式分析 1.鉴权认证方式一 - access_token - 针对HTTP API调用者 2.鉴权认证方 ...

  10. Tess4J OCR简单使用教程

    Tess4J简介 Tesseract-OCR支持中文识别,并且开源和提供全套的训练工具,是快速低成本开发的首选.而Tess4J则是Tesseract在Java PC上的应用.在英文和数字识别中性能还是 ...