BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]
1778: [Usaco2010 Hol]Dotp 驱逐猪猡
题意:一个炸弹从1出发p/q的概率爆炸,否则等概率走向相邻的点。求在每个点爆炸的概率
高斯消元求不爆炸到达每个点的概率,然后在一个点爆炸就是\(\frac{f[i]}{sum}\)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef unsigned long long ll;
const int N=305, M=1e5;
const double eps=1e-15;
inline int read() {
char c=getchar(); int x=0, f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, m, u, v, de[N]; double p, q;
struct edge{int v, ne;}e[M];
int cnt=1, h[N];
inline void ins(int u, int v) {
e[++cnt]=(edge){v, h[u]}; h[u]=cnt;
e[++cnt]=(edge){u, h[v]}; h[v]=cnt;
}
double a[N][N];
void build() {
a[1][1]=1; a[1][n+1]=1;
for(int u=1; u<=n; u++) {
a[u][u] = 1;
for(int i=h[u];i;i=e[i].ne) {
int v=e[i].v;
a[u][v] += -(1-p/q)/de[v];
}
}
//for(int i=1; i<=n; i++) for(int j=1; j<=n+1; j++) printf("%lf%c",a[i][j], j==n+1?'\n':' ');
}
void gauss() {
for(int i=1; i<=n; i++) {
int r=i;
for(int j=i; j<=n; j++) if(abs(a[j][i])>abs(a[r][i])) r=j;
if(r!=i) for(int j=1; j<=n+1; j++) swap(a[r][j], a[i][j]);
for(int k=i+1; k<=n; k++) if(abs(a[k][i])>eps) {
double t = a[k][i]/a[i][i];
for(int j=i; j<=n+1; j++) a[k][j] -= t*a[i][j];
}
}
for(int i=n; i>=1; i--) {
for(int j=n; j>i; j--) a[i][n+1] -= a[i][j]*a[j][n+1];
a[i][n+1] /= a[i][i];
}
}
int main() {
freopen("in","r",stdin);
n=read(); m=read(); p=read(); q=read();
for(int i=1; i<=m; i++) u=read(), v=read(), ins(u, v), de[u]++, de[v]++;
build();
gauss();
double sum=0;
for(int i=1; i<=n; i++) sum += a[i][n+1];// printf("hi %d %lf\n", i, a[i][n+1]);
for(int i=1; i<=n; i++) printf("%.9lf\n", a[i][n+1]/sum+eps);
}
BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]的更多相关文章
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元+期望dp)
传送门 解题思路 设\(f(x)\)表示到\(x\)这个点的期望次数,那么转移方程为\(f(x)=\sum\frac{f(u)*(1 - \frac{p}{q})}{deg(u)}\),其中\(u\) ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 (高斯消元)
题面 题目传送门 分析 令爆炸概率为PPP.设 f(i)=∑k=0∞pk(i)\large f(i)=\sum_{k=0}^{\infty}p_k(i)f(i)=∑k=0∞pk(i),pk(i)p ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡
1778: [Usaco2010 Hol]Dotp 驱逐猪猡 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 563 Solved: 216[Submi ...
- BZOJ 1778 [Usaco2010 Hol]Dotp 驱逐猪猡 ——期望DP
思路和BZOJ 博物馆很像. 同样是高斯消元 #include <map> #include <ctime> #include <cmath> #include & ...
- bzoj 1778: [Usaco2010 Hol]Dotp 驱逐猪猡【dp+高斯消元】
算是比较经典的高斯消元应用了 设f[i]为i点答案,那么dp转移为f[u]=Σf[v]*(1-p/q)/d[v],意思是在u点爆炸可以从与u相连的v点转移过来 然后因为所有f都是未知数,高斯消元即可( ...
- bzoj 1778 [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元)
[题意] 炸弹从1开始运动,每次有P/Q的概率爆炸,否则等概率沿边移动,问在每个城市爆炸的概率. [思路] 设M表示移动一次后i->j的概率.Mk为移动k次后的概率,则有: Mk=M^k 设S= ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 概率与期望+高斯消元
这个还挺友好的,自己相对轻松能想出来~令 $f[i]$ 表示起点到点 $i$ 的期望次数,则 $ans[i]=f[i]\times \frac{p}{q}$ #include <cmath> ...
- 【BZOJ】1778: [Usaco2010 Hol]Dotp 驱逐猪猡
[题意]给定无向图,炸弹开始在1,在每个点爆炸概率Q=p/q,不爆炸则等概率往邻点走,求在每个点爆炸的概率.n<=300. [算法]概率+高斯消元 [题解]很直接的会考虑假设每个点爆炸的概率,无 ...
- BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元
BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...
随机推荐
- iOS扩展——Objective-C开发编程规范
最近准备开始系统学习一个完整项目的开发流程和思路,在此之前,我们需要对iOS的开发变成规范进行更系统和详尽的学习,随意对编程规范进行了整理和学习.本文内容主要转载自:Objective-C-Codin ...
- python数据类型(二)
一.List(列表) List(列表) 是 Python 中使用最频繁的数据类型. 列表可以完成大多数集合类的数据结构实现.列表中元素的类型可以不相同,它支持数字,字符串甚至可以包含列表(所谓嵌套). ...
- 如何让phpmyadmin输入密码再进入
分类: wamp 对于很多不熟悉PHP环境安装的朋友来说,用集成环境可以更快的上手,更方便的搭建PHP的运行环境,但是,WAMP的集成环境仅仅是将底层基础工作做好了,有些个别关键的配置操作并没有集成到 ...
- Node.js/Vue环境搭配安装
http://blog.sina.com.cn/s/blog_497ff1a70102x0sw.html 第一次接触Node.js,想创建自己的服务就须配置好Node.js环境 安装Node.js 下 ...
- dede的pagelist标签的listsize数字属性详解
转载▼http://blog.sina.com.cn/s/blog_a4f3bd4e01012c8n.html dede的pagelist标签的listsize数字属性详解.见远seo经常用织梦搭建各 ...
- 常用SQL笔记总结
DDL(data definition language)创建和管理表 1.创建表 1.直接创建 例如: create table emp( name varchar(20), salary int ...
- PostgreSql问题:ERROR: operator does not exist: timestamp without time zone > character varying
问题描述: ERROR: operator does not exist: timestamp without time zone > character varying 解决方法: //注意 ...
- Java数据持久层框架 MyBatis之API学习四(xml配置文件详解)
摘录网址: http://blog.csdn.net/u010107350/article/details/51292500 对于MyBatis的学习而言,最好去MyBatis的官方文档:http:/ ...
- react项目中遇到的坑
1,touchStart和touchEnd 如果touchstart和touchend改变的是同一个state,那么在首次加载渲染的时候组件会陷入死循环,原因是touchstart会直接触发,但此时s ...
- Azure CLI对ASM,ARM资源的基本操作
本文主要介绍Windows Azure CLI对ASM及ARM资源的基本操作 1.在windows的CMD或Powershell环境下,输入命令:azure,可以查看到当前操作的模式为ASM还是ARM ...